6.3 The Sample Mean and the Sample Variance

Let $X_1, X_2, ..., X_n$ denote a random sample of size $n \ge 2$ from a distribution that is $N(\mu, \sigma^2)$. Here we study the distributions of the statistics

$$\bar{X} = \frac{1}{n} \sum_{i=1}^{n} X_i$$

and

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2}$$

Note: \overline{X} is a linear combination of indendent normal random variables, it is normally distributed with

$$E(\overline{X}) = \mu$$
 and $Var(\overline{X}) = \frac{\sigma^2}{n}$

We want to show

Corollary A \overline{X} and S^2 are independently distributed.

Theorem B The distribution of $(n-1)S^2/\sigma^2$ is the chi-square distribution with n-1 degrees of freedom.

Corollary B Let \overline{X} and S^2 be as given at the beginning of this section. Then

$$\frac{X-\mu}{S/\sqrt{n}} \sim t_{n-1}$$

Turns out we need Theorem A to prove Corollary A

Theorem A The random variable \overline{X} and the random variables $(X_1 - \overline{X}, X_2 - \overline{X}, \ldots, X_n - \overline{X})$ are independent.

Let's prove some theorems!