Chapter 6 Distributions Derived from the Normal Distribution

6.3 The Sample Mean and the Sample Variance

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample of size $n \geq 2$ from a distribution that is $N\left(\mu, \sigma^{2}\right)$. Here we study the distributions of the statistics

$$
\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

and

$$
S^{2}=\frac{1}{n-1} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}
$$

Note: \bar{X} is a linear combination of indendent normal random variables, it is normally distributed with

$$
E(\bar{X})=\mu \text { and } \operatorname{Var}(\bar{X})=\frac{\sigma^{2}}{n}
$$

We want to show

Corollary A \bar{X} and S^{2} are independentl distributed.

Theorem B The distribution of $(n-1) S^{2} / \sigma^{2}$ is the chi-square distribution with $n-1$ degrees of freedom.

Corollary B Let \bar{X} and S^{2} be as given at the beginning of this section. Then

$$
\frac{\bar{X}-\mu}{S / \sqrt{n}} \sim t_{n-1}
$$

Turns out we need Theorem A to prove Corollary A

Theorem A The random variable \bar{X} and the random variables $\left(X_{1}-\bar{X}, X_{2}-\right.$ $\left.\bar{X}, \ldots, X_{n}-\bar{X}\right)$ are independent.

Let's prove some theorems!

