Chapter 5 Limit Theorems

5.3 Convergence in Distribution and the Central Limit Theorem

Central Limit Theorem Let X1, X», ..., X,, be a random sample from a distri-
bution with mean p and positive variance o2. Then the random variable

im1 Xi — np _

o\/n

has a limiting distribution that is normal with mean 0 and variance 1.

Y, = V(X —p)/o



Proof: We assume the existence of the mgf
M(t) = Ele™]
for —h <t < h. Let
m(t) = Ele'™ "] = e M M (t)

be the mgf of the random variable X — p, which also exists for —h <t < h. Since
m(t) is the mgf of X — p it is clear that



By Taylor’s formula there exists a number A between 0 and ¢ such that
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. m//(;\)t2

If we add and subtract "?2,




Now consider the mgf of Y,
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for —h < \/—<h

In the expression

replace t with \/— to obtain
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for some A\ between 0 and \/— Then we can write the moment generating function

of Y, by

M(t;n) = {1 A OVl

on 2no?

Note that A converges to 0 as n approaches infinity. By the continuity of m” we
know that this implies
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Thus, we see that
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for all real ¢, which is the moment generating function of a standard normal random
variable. Thus, Y,, converges in distribution to a standard normal random variable.



Example 1: Approximate the probability that the mean of a random sample of
size 15 from a distribution with pdf f(z) = 3z% 0 < z < 1, is between ? and ;.

3

FE[X]| = /0133(3:1:2) =1
EIXY = [ 42(32%) =
—OCU €T —5

3 3 3 3
X:——— _ = —
Var(X) = -1 X1 =5

From these results, we see that the expected value of X is 3 and the standard devi-

1
ation of X is /3/80//15 = 1/20.

3/5—3/4 X —3/4 4/5-3/4
1/20 = 1/20 = 1/20

Pl ]



which is approximately,

Pl-3<Z <1]=®(1) — d(—3) = 0.840

where Z is a standard normal random variable.

In this example we used the CLT, even though it is not obvious that 15 is suffi-
ciently large for a good approximation. Let’s see if that matches a Monte Carlo
approximation of the probability of interest.

##### Simulate x-bar 10,000 times
##### and save the values

xbar<-c(1:10000)

for( i in 1:10000){
print (i)
sample<-runif (15)
sample<-sample” (1/3)
sampmean<-mean (sample)
xbar [i] <-sampmean

+



#### Check what proportion of
#### the sample means fall in
### the interval (3/5,4/5)

upper<-xbar<(4/5)

lower<-xbar > (3/5)
proportion<-mean (upper*lower)
[1] 0.8484

We can see the the normal approximation and the Monte Carlo approximation nearly
agree.



4.6 Approximation Methods

Delta Method: Consider a smooth function g(z), and let X,, denote the sample

mean of a random sample of size n from a distribution with mean n and variance

o2,

Since, X, converges in probability to z, we can use Taylor’s formula for the approx-
imation,

9(Xn) = g(p) + (Xn — p)g' (1)
when ¢'(p) exists and is not 0. From this we can see that

Elg(X,)] ~ g(u)

Var(g(X,)] ~ —= =



In fact, the random variable

v _ 9% — g
AOREE

converges in distribution to a standard normal random variable.

Example 2: Let X, X, ..., X, be a random sample from a Poisson distribution
with mean p. Find the hmltmg distribution of v X.

Clearly X converges in probability to j, so that VX converges in probability to /u.
By the delta method, we know that

and



VarlVR) ~ [y ) =
1
"
Furthermore,
VX — i
1/(4n)

is approximately standard normal.



