
Chapter 5 Limit Theorems

5.3 Convergence in Distribution and the Central Limit Theorem

Central Limit Theorem Let X1, X2, . . . , Xn be a random sample from a distri-

bution with mean µ and positive variance σ2. Then the random variable

Yn =
∑n

i=1 Xi − nµ

σ
√

n
=
√

n(X̄n − µ)/σ

has a limiting distribution that is normal with mean 0 and variance 1.

1



Proof: We assume the existence of the mgf

M(t) = E[etX ]

for −h < t < h. Let

m(t) = E[et(X−µ)] = e−µtM(t)

be the mgf of the random variable X − µ, which also exists for −h < t < h. Since

m(t) is the mgf of X − µ it is clear that

m(0) = 1

m′(0) = E[X − µ] = 0, and

m′′(0) = E[(X − µ)2] = σ2.
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By Taylor’s formula there exists a number λ between 0 and t such that

m(t) = m(0) + m′(0)t +
m′′(λ)t2

2

= 1 +
m′′(λ)t2

2

If we add and subtract σ2t2

2 ,

m(t) = 1 +
σ2t2

2
+

[m′′(λ)− σ2]t2

2
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Now consider the mgf of Yn,

M(t; n) = E

exp

t
∑n

i=1 Xi − nµ

σ
√

n




=
n∏

i=1
E

exp

t
Xi − µ

σ
√

n




=

m
 t

σ
√

n



n
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for −h < t
σ
√

n < h.

In the expression

m(t) = 1 +
σ2t2

2
+

[m′′(λ)− σ2]t2

2

replace t with t
σ
√

n to obtain

m

 t

σ
√

n

 = 1 +
t2

2n
+

[m′′(λ)− σ2]t2

2nσ2

for some λ between 0 and t
σ
√

n. Then we can write the moment generating function

of Yn by

M(t; n) =

1 +
t2

2n
+

[m′′(λ)− σ2]t2

2nσ2


n

Note that λ converges to 0 as n approaches infinity. By the continuity of m′′ we

know that this implies
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lim
n→∞[m′′(λ)− σ2] = 0

Thus, we see that

lim
n→∞M(t; n) = lim

n→∞

1 +
t2

2n
+

[m′′(λ)− σ2]t2

2nσ2


n

= lim
n→∞

1 +
t2

2n


n

= et2/2

for all real t, which is the moment generating function of a standard normal random

variable. Thus, Yn converges in distribution to a standard normal random variable.
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Example 1: Approximate the probability that the mean of a random sample of

size 15 from a distribution with pdf f (x) = 3x2, 0 < x < 1, is between 3
5 and 4

5.

E[X ] =
∫ 1

0
x(3x2) =

3

4

E[X2] =
∫ 1

0
x2(3x2) =

3

5

V ar(X) =
3

5
− 3

4
× 3

4
=

3

80

From these results, we see that the expected value of X̄ is 3
4 and the standard devi-

ation of X̄ is
√
3/80/

√
15 = 1/20.

P [
3

5
< X̄ <

4

5
] =

P [
3/5− 3/4

1/20
<

X̄ − 3/4

1/20
<

4/5− 3/4

1/20
]
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which is approximately,

P [−3 < Z < 1] = Φ(1)− Φ(−3) = 0.840

where Z is a standard normal random variable.

In this example we used the CLT, even though it is not obvious that 15 is suffi-

ciently large for a good approximation. Let’s see if that matches a Monte Carlo

approximation of the probability of interest.

##### Simulate x-bar 10,000 times

##### and save the values

xbar<-c(1:10000)

for( i in 1:10000){

print(i)

sample<-runif(15)

sample<-sample^(1/3)

sampmean<-mean(sample)

xbar[i]<-sampmean

}
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#### Check what proportion of

#### the sample means fall in

### the interval (3/5,4/5)

upper<-xbar<(4/5)

lower<-xbar > (3/5)

proportion<-mean(upper*lower)

[1] 0.8484

We can see the the normal approximation and the Monte Carlo approximation nearly

agree.
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4.6 Approximation Methods

Delta Method: Consider a smooth function g(x), and let X̄n denote the sample

mean of a random sample of size n from a distribution with mean n and variance

σ2.

Since, X̄n converges in probability to µ, we can use Taylor’s formula for the approx-

imation,

g(X̄n) ≈ g(µ) + (X̄n − µ)g′(µ)

when g′(µ) exists and is not 0. From this we can see that

E[g(X̄n)] ≈ g(µ)

V ar[g(X̄n)] ≈ σ2[g′(µ)]2

n
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In fact, the random variable

Yn =
g(X̄n)− g(µ)√
[g′(µ)]2σ2/n

converges in distribution to a standard normal random variable.

Example 2: Let X1, X2, ..., Xn be a random sample from a Poisson distribution

with mean µ. Find the limiting distribution of
√

X̄ .

Clearly X̄ converges in probability to µ, so that
√

X̄ converges in probability to
√

µ.

By the delta method, we know that

E[
√

X̄ ] ≈ √µ

and
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V ar(
√

X̄) ≈ [1/(2
√

µ)]2
V ar(X)

n
=

1

4µ
× µ

n

=
1

4n

Furthermore,

√
X̄ −√µ√
1/(4n)

is approximately standard normal.
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