Chapter 5 Limit Theorems

5.3 Convergence in Distribution and the Central Limit Theorem

Central Limit Theorem Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and positive variance σ^{2}. Then the random variable

$$
Y_{n}=\frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}}=\sqrt{n}\left(\bar{X}_{n}-\mu\right) / \sigma
$$

has a limiting distribution that is normal with mean 0 and variance 1 .

Proof: We assume the existence of the mgf

$$
M(t)=E\left[e^{t X}\right]
$$

for $-h<t<h$. Let

$$
m(t)=E\left[e^{t(X-\mu)}\right]=e^{-\mu t} M(t)
$$

be the mgf of the random variable $X-\mu$, which also exists for $-h<t<h$. Since $m(t)$ is the mgf of $X-\mu$ it is clear that
$m(0)=1$
$m^{\prime}(0)=E[X-\mu]=0$, and
$m^{\prime \prime}(0)=E\left[(X-\mu)^{2}\right]=\sigma^{2}$.

By Taylor's formula there exists a number λ between 0 and t such that

$$
\begin{gathered}
m(t)=m(0)+m^{\prime}(0) t+\frac{m^{\prime \prime}(\lambda) t^{2}}{2} \\
=1+\frac{m^{\prime \prime}(\lambda) t^{2}}{2}
\end{gathered}
$$

If we add and subtract $\frac{\sigma^{2} t^{2}}{2}$,

$$
m(t)=1+\frac{\sigma^{2} t^{2}}{2}+\frac{\left[m^{\prime \prime}(\lambda)-\sigma^{2}\right] t^{2}}{2}
$$

Now consider the mgf of Y_{n},

$$
\begin{aligned}
M(t ; n) & =E\left[\exp \left(t \frac{\sum_{i=1}^{n} X_{i}-n \mu}{\sigma \sqrt{n}}\right)\right] \\
= & \prod_{i=1}^{n} E\left[\exp \left(t \frac{X_{i}-\mu}{\sigma \sqrt{n}}\right)\right] \\
& =\left[m\left(\frac{t}{\sigma \sqrt{n}}\right)\right]^{n}
\end{aligned}
$$

$$
\text { for }-h<\frac{t}{\sigma \sqrt{n}}<h \text {. }
$$

In the expression

$$
m(t)=1+\frac{\sigma^{2} t^{2}}{2}+\frac{\left[m^{\prime \prime}(\lambda)-\sigma^{2}\right] t^{2}}{2}
$$

replace t with $\frac{t}{\sigma \sqrt{n}}$ to obtain

$$
m\left(\frac{t}{\sigma \sqrt{n}}\right)=1+\frac{t^{2}}{2 n}+\frac{\left[m^{\prime \prime}(\lambda)-\sigma^{2}\right] t^{2}}{2 n \sigma^{2}}
$$

for some λ between 0 and $\frac{t}{\sigma \sqrt{n}}$. Then we can write the moment generating function of Y_{n} by

$$
M(t ; n)=\left[1+\frac{t^{2}}{2 n}+\frac{\left[m^{\prime \prime}(\lambda)-\sigma^{2}\right] t^{2}}{2 n \sigma^{2}}\right]^{n}
$$

Note that λ converges to 0 as n approaches infinity. By the continuity of $m^{\prime \prime}$ we know that this implies

$$
\lim _{n \rightarrow \infty}\left[m^{\prime \prime}(\lambda)-\sigma^{2}\right]=0
$$

Thus, we see that

$$
\begin{aligned}
\lim _{n \rightarrow \infty} M(t ; n) & =\lim _{n \rightarrow \infty}\left[1+\frac{t^{2}}{2 n}+\frac{\left[m^{\prime \prime}(\lambda)-\sigma^{2}\right] t^{2}}{2 n \sigma^{2}}\right]^{n} \\
& =\lim _{n \rightarrow \infty}\left[1+\frac{t^{2}}{2 n}\right]^{n}=e^{t^{2} / 2}
\end{aligned}
$$

for all real t, which is the moment generating function of a standard normal random variable. Thus, Y_{n} converges in distribution to a standard normal random variable.

Example 1: Approximate the probability that the mean of a random sample of size 15 from a distribution with pdf $f(x)=3 x^{2}, 0<x<1$, is between $\frac{3}{5}$ and $\frac{4}{5}$.

$$
\begin{aligned}
E[X] & =\int_{0}^{1} x\left(3 x^{2}\right)=\frac{3}{4} \\
E\left[X^{2}\right] & =\int_{0}^{1} x^{2}\left(3 x^{2}\right)=\frac{3}{5} \\
\operatorname{Var}(X) & =\frac{3}{5}-\frac{3}{4} \times \frac{3}{4}=\frac{3}{80}
\end{aligned}
$$

From these results, we see that the expected value of \bar{X} is $\frac{3}{4}$ and the standard deviation of \bar{X} is $\sqrt{3 / 80} / \sqrt{15}=1 / 20$.

$$
\begin{gathered}
P\left[\frac{3}{5}<\bar{X}<\frac{4}{5}\right]= \\
P\left[\frac{3 / 5-3 / 4}{1 / 20}<\frac{\bar{X}-3 / 4}{1 / 20}<\frac{4 / 5-3 / 4}{1 / 20}\right]
\end{gathered}
$$

which is approximately,

$$
P[-3<Z<1]=\Phi(1)-\Phi(-3)=0.840
$$

where Z is a standard normal random variable.

In this example we used the CLT, even though it is not obvious that 15 is sufficiently large for a good approximation. Let's see if that matches a Monte Carlo approximation of the probability of interest.
\#\#\#\#\# Simulate x-bar 10,000 times
\#\#\#\#\# and save the values

```
xbar<-c(1:10000)
for( i in 1:10000){
print(i)
sample<-runif(15)
sample<-sample^(1/3)
sampmean<-mean(sample)
xbar[i]<-sampmean
}
```

```
#### Check what proportion of
#### the sample means fall in
### the interval (3/5,4/5)
upper<-xbar<(4/5)
lower<-xbar > (3/5)
proportion<-mean(upper*lower)
[1] 0.8484
We can see the the normal approximation and the Monte Carlo approximation nearly
agree.
```


4.6 Approximation Methods

Delta Method: Consider a smooth function $g(x)$, and let \bar{X}_{n} denote the sample mean of a random sample of size n from a distribution with mean n and variance σ^{2}.

Since, \bar{X}_{n} converges in probability to μ, we can use Taylor's formula for the approximation,

$$
g\left(\bar{X}_{n}\right) \approx g(\mu)+\left(\bar{X}_{n}-\mu\right) g^{\prime}(\mu)
$$

when $g^{\prime}(\mu)$ exists and is not 0 . From this we can see that

$$
\begin{aligned}
E\left[g\left(\bar{X}_{n}\right)\right] & \approx g(\mu) \\
\operatorname{Var}\left[g\left(\bar{X}_{n}\right)\right] & \approx \frac{\sigma^{2}\left[g^{\prime}(\mu)\right]^{2}}{n}
\end{aligned}
$$

In fact, the random variable

$$
Y_{n}=\frac{g\left(\bar{X}_{n}\right)-g(\mu)}{\sqrt{\left[g^{\prime}(\mu)\right]^{2} \sigma^{2} / n}}
$$

converges in distribution to a standard normal random variable.
Example 2: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean μ. Find the limiting distribution of \sqrt{X}.

Clearly \bar{X} converges in probability to μ, so that $\sqrt{\bar{X}}$ converges in probability to $\sqrt{\mu}$.

By the delta method, we know that

$$
E[\sqrt{\bar{X}}] \approx \sqrt{\mu}
$$

and

$$
\begin{gathered}
\operatorname{Var}(\sqrt{\bar{X}}) \approx[1 /(2 \sqrt{\mu})]^{2} \frac{\operatorname{Var}(X)}{n}=\frac{1}{4 \mu} \times \frac{\mu}{n} \\
=\frac{1}{4 n}
\end{gathered}
$$

Furthermore,

$$
\frac{\sqrt{\bar{X}}-\sqrt{\mu}}{\sqrt{1 /(4 n)}}
$$

is approximately standard normal.

