
Chapter 8 Estimation of Parameters
and Fitting of Probability Distributions

8.5 The Method of Maximum Likelihood

Point Estimation: Let a random variable X have a pdf that is of known func-

tional form, but depends on an unknown parameter θ. We assume that θ may take

any value in a set Ω.

We can denote members of this family of pdf’s by f (x; θ) for θ ∈ Ω. The entire

family of pdf’s can be described by {f (x; θ) : θ ∈ Ω}. Here the set Ω is referred to

as the parameter space.

For example, consider the family of normal distributions with variance equal to 1,

but with unknown mean, {N(θ, 1) : θ ∈ Ω}, where Ω is the set −∞ < θ < ∞.

The objective of point estimation is to estimate the true value of θ by using a

random sample of observations from the distribution.
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One method of point estimation is called maximum likelihood estimation.

Example 1: Let X1, X2, ..., Xn denote a random sample from a distribution with

pdf

f (x) = θx(1− θ)1−x

for x = 0, 1 and Ω = [0, 1]. Let L(θ) denote the likelihood function. (Your book

uses lik(θ).)

L(θ) = P [X1 = x1, X2 = x2, ..., Xn = xn]

=
n∏

i=1
P [Xi = xi] =

n∏
i=1

f (xi; θ)

=
n∏

i=1
θxi(1− θ)1−xi = θ

∑
xi(1− θ)n−

∑
xi

A reasonable method for constructing a point estimate of θ would be to select the

value of θ ∈ Ω for which the probability of the observed data is the greatest. Thus,

we want to maximize L(θ) as a function of θ.
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This is equivalent to finding the value at which the log-likelihood function

reaches its maximum.

l(θ) = ln[L(θ)] =

 n∑
i=1

xi

 ln(θ) +

n− n∑
i=1

xi

 ln(1− θ)

To find this point, take the derivative of the log-likelihood with respect to θ, and set

it equal to 0.

dln[L(θ)]

dθ
=

∑n
i=1 xi

θ
− n− ∑n

i=1 xi

1− θ
= 0

for θ ∈ (0,1). By solving for the root of this equation we see that the solution is

θ =
∑

xi

n
= x̄

Thus, for this family of distributions distribution the statistic

θ̂ =
1

n

n∑
i=1

Xi = X̄

is called the maximum likelihood estimator of θ.
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In general, let X1, X2, ..., Xn be a random sample from a distribution having pdf

f (x; θ) for θ ∈ Ω. The likelihood function is given by

L(θ; x1, x2, ..., xn) =
n∏

i=1
f (xi; θ)

and is defined for θ ∈ Ω.

Suppose the statistic

θ̂ = u(X1, .., Xn)

has the property that

L(θ̂; x1, ..., xn) ≥ L(θ; x1, ..., xn)

for all θ ∈ Ω.

Then θ̂ is called a maximum likelihood estimator of θ.
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Definition Any statistic whose mathematical expectation is equal to a parameter

θ is called an unbiased estimator of θ. Otherwise, the statistic is said to be biased.

In some cases, the maximum likelihood estimator is unbiased, but that is not the

case in general.

Example 2: Consider the family of Bernoulli distributions of Example 1. Is the

mle unbiased?

θ̂ = X̄

E[θ̂] =
1

n

n∑
i=1

E[Xi] = E[X ]

=
1∑

x=0
f (x)x = (0)(1− θ) + (1)(θ) = θ

So, we can see that θ̂ is an unbiased estimate of θ.
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Example 3: Let

f (x; θ) =
1

θ
for 0 < x ≤ θ, and Ω = (0,∞).

Let X1, X2, ..., Xn be a random sample from this distribution, and let

X(1) < X(2) < ... < X(n) denote the corresponding order statistics. Then

L(θ; x1, ..., xn) =
1

θn
I [0 < x(n) ≤ θ]

This is maximized by taking θ as small as possible subject to I [0 < x(n) ≤ θ] = 1.

Clearly, the solution is then

θ̂ = X(n)

One might expect θ̂ to be slightly biased, because X(n) will always be somewhat less

than θ with probability 1, and can never be greater than θ.

Let Yn = X(n) for easier notation.
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E[θ̂] = E[Yn] =
∫ θ

0
ynfn(yn)dyn

Recall how to find fn(yn). For 0 < yn ≤ θ,

Fn(yn) = [F (yn)]n =
(yn

θ

)n

and

fn(yn) = F ′(yn) = n
(yn

θ

)n−1

E[θ̂] = E[Yn] =
n

θn

∫ θ

0
yn

ndyn =
n

θn

(θn+1)

(n + 1)
=

nθ

n + 1

We can see that θ̂ is biased in estimation of θ.

However, notice that

lim
n→∞

nθ

n + 1
= θ.

The bias disappears as n becomes larger. In that sense, we can say that θ̂ is asymp-

totically unbiased. This is closely related but not identical to the concept of

consistency.
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Definition A statistic that converges in probability to a parameter θ is called a

consistent estimator of θ.

Let’s show that θ̂ = X(n) in the previous example is a consistent estimator of θ.

Let 0 < ε < θ.

P [|θ̂ − θ| > ε] = P [|X(n) − θ| > ε]

= P [X(n) < θ − ε]

θ − ε

θ

n

which approaches 0 as n approaches infinity. This proves that θ̂ is a consistent

estimator of θ.
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In many cases, probability distributions are determined by more than one parameter.

For example, consider the normal distribution which is determined by the mean

θ1 = µ, and the variance θ2 = σ2.

f (x; θ1, θ2) =
1

(2πθ2)1/2
e
− (x−θ1)2

2θ2

Let X1, X2, ..., Xn denote a random sample from this distribution. Then we write

the log-likelihood as a function of θ1 and θ2 by

l(θ) = ln[L(θ1, θ2; x1, x2, ..., xn)] =
n∑

i=1
ln[f (xi; θ1, θ2)]

= −nln(2πθ2)

2
−

∑n
i=1(xi − θ1)

2

2θ2

This is maximized by taking partial derivatives and setting them equal to 0.

∂ln[L]

∂θ1
=

∑n
i=1(xi − θ1)

θ2

and
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∂ln[L]

∂θ2
=

∑n
i=1(xi − θ1)

2

2θ2
2

− n

2θ2

By setting these partial derivatives equal to 0 we see that a solution is obtained when

θ1 = x̄ and θ2 = 1
n

∑n
i=1(xi − x̄)2.

θ̂1 = X̄

θ̂2 =
1

n

n∑
i=1

(Xi − X̄)2
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8.4 The Method of Moments

Sometimes it is impossible to find maximum likelihood estimators in a convenient

closed form and numerical methods must be used. There are other ways to obtain

point estimates.

Method of moments simply equates the moments of the distribution to the cor-

responding moments of the sample.

The expectation E(Xk) is frequently called the kth moment of the distribution.

The sum Mk =
∑n

i=1
Xk

i
n = (1/n)

∑n
i=1 Xk

i ) is the kth moment of the sample.

Example: Find the MLE and MOM for a random sample of size n from the

Gamma(λ) distribution.
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8.5.3 Confidence Intervals for Maximum Likelihood Estimates

Interval Estimation: Point estimation of a parameter is often accompanied by

interval estimation, in which the goal is to identify a strategy for constructing inter-

vals that have some prespecified probability of containing the value of the parameter.

Such intervals are called confidence intervals.

Suppose X1, X2, ..., Xn is a random sample from a distribution with unknown mean

µ and unknown variance σ2.

Our aim is to construct a confidence interval for the mean µ. This amounts to

defining a procedure to compute a lower limit A = uA(X1, X2, ..., Xn) and an upper

limit B = uB(X1, X2, ..., Xn) such that for a specified confidence level 1− α,

P [µ ∈ (A, B)] = 1− α

Notice that A and B are functions of the data, so they can be viewed as random

variables. How can we do this?
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First, consider a random sample from a distribution that is N(µ, σ2), σ2 known.

Let’s consider the MLE of µ, µ̂ = X̄ . Know X̄ is N(µ, σ2/n), then

P [−zα/2 <
X̄ − µ

σ/
√

n
< zα/2] = 1− α

implies that

P [X̄ − zα/2σ/
√

n < µ < X̄ + zα/2σ/
√

n] = 1− α.

Thus, we may take A = X̄ − zα/2σ/
√

n and B = X̄ + zα/2σ/
√

n

so that our confidence interval for µ is

(X̄ − zα/2σ/
√

n, X̄ + zα/2σ/
√

n).

We can construct a confidence interval that has exactly the desired coverage proba-

bility for each n
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What if σ2 is not known? We can use S2 as an estimator.

In Section 6.3 we saw that when X1, X2, ..., Xn is a random sample of size n from a

normal distribution with mean µ and variance σ2, the statistic

T =
X̄ − µ

S/
√

n

has a t-distribution with n− 1 degrees of freedom.

Then if we define ta/2 in a similar way as zα/2, we know that

P [−tα/2 <
X̄ − µ

S/
√

n
< tα/2] = 1− α

which implies that a confidence interval of level 1− α for µ is given by

(X̄ − tα/2S/
√

n, X̄ + tα/2S/
√

n).
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Example 1: A sample of 25 birthweights is taken from the population of year 1998

birthweights. Assume that the sample standard deviation for birthweight is 20 oz.

Construct a 95% confidence interval for the population mean birthweight.

x̄ = 116 oz, is our point estimate of the population mean birthweight. To find a 95%

confidence interval (1-α=.95), first find t.05/2.

By using Table 4 and 24 degrees of freedom, we find t.05/2 = 2.064.

95% confidence interval for the mean birthweight is given by,

(116− 2.064
s√
25

, 116 + 2.064
s√
25

).

Plugging in s = 20 we find that the 95 percent confidence interval is

(107.774, 124.256)
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Next, consider a special case of the central limit theorem, which is the normal ap-

proximation to the binomial distribution. Let Y be b(n, p) for some unknown p in

the interval (0, 1).

Let p̂ = Y/n denote a point estimate of p.

E[p̂] = E[Y/n] = p

and

V ar[p̂] = p(1− p)/n

By the central limit theorem,
p̂− p√

p(1− p)/n

converges in distribution to a standard normal random variable. Thus, for large

values of n,

P [−zα/2 <
p̂− p√

p(1− p)/n
< zα/2] ≈ 1− α
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Also, because p̂ converges in probability to p we apply the Theorem to obtain that

p̂− p√
p̂(1− p̂)/n

converges in distribution to a standard normal random variable.

This implies that

P [−zα/2 <
p̂− p√

p̂(1− p̂)/n
< zα/2] ≈ 1− α

From this we obtain a confidence interval for p of level 1− α by

(p̂− zα/2

√
p̂(1− p̂)/n, p̂ + zα/2

√
p̂(1− p̂)/n).
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Example 2: In a study of 100 patients with an ocular vascular disorder, 40 were

found to show improved visual function after a one-month course of systemic steroid

therapy.

Obtain a 90 percent confidence interval for p, the population improvement rate.

p̂ = 40/100 = .4.

Standard error=
√
p̂(1− p̂)/n =

√
.4× .6/100

z.10/2 = 1.645.

90% CI= .4± 1.645×
√
.4× .6/100=(0.32,0.48).
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Let X1, X2, ..., Xn and Y1, Y2, ..., Ym denote independent random samples from two

distributions, N(µX , σ2) and N(µY , σ2), respectively.

Denote the means of the samples by X̄ and Ȳ and the sample variances by S2
X and

S2
Y . Our aim is to find a confidence interval for the difference µX−µX . The obvious

point estimator of this difference is X̄ − Ȳ .

We know that X̄ − Ȳ has a normal distribution with mean µ1 − µ2 and variance

σ2/n + σ2/m. Thus,

(X̄ − Ȳ )− (µX − µY )√
σ2/n + σ2/m

has a standard normal distribution.

In Chapter 6 we saw that (n− 1)S2
X/σ2 and (m− 1)S2

Y /σ2 have chi-square distri-

butions with n− 1 and m− 1 degrees of freedom, respectively.
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Because they are independent, we may infer that

((n− 1)S2
X + (m− 1)S2

Y ))/σ2

has a chi-square distribution with n + m− 2 degrees of freedom.

Because of the independence of X̄ , Ȳ , S2
X and S2

X we see that

T =
(X̄ − Ȳ )− (µ1 − µ2)√
(n−1)S2

X+(m−1)S2
Y

n+m−2

(
1
n + 1

m

)

has a t-distribution with n + m− 2 degrees of freedom.

Then we can define a confidence interval with level 1 − α for µ1 − µ2 according to

(A, B), where

A = (X̄ − Ȳ )− tα/2

√√√√√(n− 1)S2
X + (m− 1)S2

Y

n + m− 2

1

n
+

1

m


and

B = (X̄ − Ȳ ) + tα/2

√√√√√(n− 1)S2
X + (m− 1)S2

Y

n + m− 2

1

n
+

1

m


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Now suppose that X and Y are independent with distributions b(n1, p1), and b(n2, p2),

respectively.

We can use our knowledge about the sampling distribution of p̂1 − p̂2, to construct

confidence intervals for the difference between two population proportions p1 − p2.

Again, the central limit theorem is used, so we require that both n1 and n2 are large.

A confidence interval for p1 − p2 of level 1− α is as follows:

(p̂1 − p̂2)± zα/2

√
p̂1(1− p̂1)/n1 + p̂2(1− p̂2)/n2
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