Chapter 8 Estimation of Parameters
and Fitting of Probability Distributions

8.6 Efficiency and the Cramer-Rao Lower Bound

Let X be a random variable with pdf f(z;0), 6 € €2 where the parameter space €2
is an interval. Note that,
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and, if we can differentiate under the integral sign,

0% f(x;0)dr /oo Of(x;0)

Y, = s 5p dr = 0.

Notice that,

o Of(x;6 s Oln|f(x;0
[ OS0), e OInlf(r:0)

v ) B 50 f(z;0)dx = 0.



Differentiating again, we have
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Notice that for the second term on the left side of the equation above we can write
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This integral is called Fisher information and is denoted by I(6). It is an expec-
tation!



We can see from the work above that
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or equivalently,
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Example 1: Let X be N(0,0%), where —oo < 6 < co. and ¢ is known. Then
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Differentiating with respect to 6 we have
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No matter which version of I(f) we use, we see that
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Example 2: Let X be binomial b(1, ). Then

fla;0)=6"(1—0)'="

and
In[f(x;0)] = xln(0) + (1 — z)in(l — 0).
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Now suppose that we have a random sample X7, Xo, ..., X,, from a distribution with
pdf f(z;0). The likelihood function is given by

L(0) = f(21;6) f(25:0) - - f(,;6)
and
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which implies that
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Thus, the natural definition of Fisher information in a sample of size n is
Oln|L(0)]

- 5{[0).

Notice that for ¢ # j, cross-product terms in this expectation are 0. By independence,
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It follows that
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Theorem A Cramer-Rao Inequality
Let Xi,..., X, be i.id with density function f(z;6).

Let T = u(Xy, X, ..., X;,) be an estimator of 8. We allow that T" might be biased,
and denote its expectation by

E[T) = E[u(X1,..., X,)] = k(8).

It turns out that we can bound Var(T) from below using the Cramer-Rao in-
equality,




If T'=u(Xy, Xo, ..., X,,) is an unbiased estimator of €, then k(6) = 6 and k'(9) = 1.
In this case, the Cramer-Rao inequality becomes

Var(T) > n1(0)

Recall from Examples 1 and 2 that le) equals 02 /n and (1 — 0) /n, respectively.

Thus, we see that in both cases the sample mean X achieves the Rao-Cramer lower
bound.



Definition Let T be an unbiased estimator of 8. The statistic T" is called an
efficient estimator of 0 if and only if the variance of T" attains the Cramer-Rao
lower bound.

Definition The ratio of the Rao-Cramer lower bound to the actual variance of an
unbiased estimator of 6 is called the efficiency of that estimator.

Example 3 Let X, Xo, ..., X,, be a random sample from a Poisson distribution
with mean @ > 0. We have seen that X is the maximum likelihood estimator of 6.
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We see that the Rao-Cramer lower bound is §/n, which is the variance of X. Hence
X is an efficient estimator of 6.

Consider a family of distributions { f(x;8) : € Q} where €2 is an interval. Assum-
ing that we can interchange differentiation with integration in the manner described
above, we can determine the limiting distribution of the maximum likelihood esti-
mator 6.

In particular, if 0 denotes the maximum likelihood estimator and

00

1
nl(0)

then Z, has a N(0,1) limiting distribution.
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This implies that 0 is asymptotically unbiased and the asymptotic variance
of 6 is 1/[nI(6)], which implies that 0 is asymptotically efficient.



By using a Theorem, we can see that the statistic
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also has limiting distribution N (0, 1). This implies that a confidence interval for 6
with confidence level of approximately (1 — «)100% is given by
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8.7 Sufficiency

Suppose X1, Xo, ..., X, is a random sample from a distribution that has pdf
f(z;0), 6 € Q. A statistic T = u(Xy, Xo, ..., X;,) can be viewed as a reduction of
the data.

We will be concerned with when it is possible to reduce the data into a statistic that
suffices for retaining all of the information in the sample about the parameter 6.

Suppose we have a statistic T = u(X7, Xo, ..., X,,) that partitions the sample space
into

(X1, X, ..oy X)) € {(w1, 20, ...y ) - u(@y, @0y .y ) = 1}

in such a way that the conditional probability distribution of X7, Xo, ..., X,, given
T =t no longer depends on 6.

In this respect, T' contains all of the information in the sample about 6, and we call
T a sufficient statistic.



Example 4: Let X1, Xo, ..., X,, be a random sample from the pdf

fla;0)=67(1—0)"
forx=0,1;0 <6 < 1.

The statistic T' = X7 + X9 + - - - X, has the pdf

fr(t) = t!(nni t)!Ht(n — o)t

fort =0,1,2,...,n.
Consider the conditional probability
PXi =21, X =29,...., X, = 2,)|T = t)

This conditional probability obviously equals 0 when ¢ # ¥ x;.
When t = > x;,

P(Xl =71, X9 = T,..., X, = $n|T — t)
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Notice that this does not involve 8 so T' = > X, is a sufficient statistic for 6.
Theorem A (factorization theorem): Let Xi, Xo, ..., X, denote a random
sample that has pdf f(z;0), 8 € €. The statistic T = u(Xy, Xo,...,X,,) is a

sufficient statistic for 6 if and only if we can find two nonnegative functions, g and
h such that

_Hlf(xi; 0) = glu(xy, o, ..., x,); Olh(x1, T2, ..., Ty

where h(xy, x9, ..., ;) does not depend upon 6.



Example 5: Let Xy, X, ..., X, denote a random sample from a distribution with
pdf
f(@;0) = 6"

for 0 <x <1and @ > 0.
Use the factorization theorem to prove that

T=u(Xy, Xs,....X,) = X1 Xy X,
is a sufficient statistic for 6.

The joint pdf of X7, X5, ..., X, is

0" (w129 - 1)) = [0 (212 - - )] ( 1 )
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for 0 < z; < 1. In the factorization theorem we let
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and let
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Since h does not depend on 6, the product X1 X5 --- X, is a sufficient statistic for 6.

Example 6: Let X, Xo, ..., X,, be a sample of size n from a Poisson distribution
with mean 6, 0 < 8 < oo. Show that

T=% X
i=1
is sufficient for 6. The joint pdf of X7, Xo, ..., X, is
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In the factorization theorem we let
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and let

h(z1, 2, ..., Tn) = ( 1 )
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Since h does not depend on @, T' is a sufficient statistic for 6.



Exponential Families

One-parameter members of an exponential family have a density or frequency func-
tion of the form

f(x;0) = exp|c(0)T(x) +d(0) + S(z)],z € A

and equal to 0 for x not in A, where the set A does not depend on 6.
Let X1, Xo, ..., X}, be a random sample of size n and has a joint pdf
.]:[1 f(x;;0) = explc(0) ; T(x;) + nd(ﬁ)]e:ﬁp[._z1 S(x;)]
We see from this result that ¥ | T'(X;) is a sufficent statistics.

Note: normal, binomial, Poisson, Gamma are members of this family!



Corollary A: If T is sufficient for 8 and if a maximum likelihood estimator 0 exists
uniquely, then 6 is a function of T

The following theorem of Rao and Blackwell implies that in searching for a best un-
biased estimator, we may restrict our attention to functions of a sufficient statistic,
if a sufficient statistic exists.

This is helpful because there is usually only one unbiased estimator of 6 based on a
sufficient statistic.

Theorem A Rao-Blackwell Theorem: Let 6 be an estimator of 6 with E (62) < o0
for all #. Suppose that T is sufficient for 6 and let 8 = E(0|T'). Then, for all 0,

B0 —0)* < E(0— 6)?

If an estimator is not a function of the sufficient statistic, it can be improved!



