
Chapter 8 Estimation of Parameters
and Fitting of Probability Distributions

8.6 Efficiency and the Cramer-Rao Lower Bound

Let X be a random variable with pdf f (x; θ), θ ∈ Ω where the parameter space Ω

is an interval. Note that,

∫ ∞
−∞ f (x; θ)dx = 1

and, if we can differentiate under the integral sign,

∂
∫∞
−∞ f (x; θ)dx

∂θ
=

∫ ∞
−∞

∂f (x; θ)

∂θ
dx = 0.

Notice that,

∫ ∞
−∞

∂f (x; θ)

∂θ
dx =

∫ ∞
−∞

∂ln[f (x; θ)]

∂θ
f (x; θ)dx = 0.
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Differentiating again, we have

∫ ∞
−∞

∂2ln[f (x; θ)]

∂θ2
f (x; θ) +

∂ln[f (x; θ)]

∂θ

∂f (x; θ)

∂θ

 dx = 0.

Notice that for the second term on the left side of the equation above we can write

∫ ∞
−∞

∂ln[f (x; θ)]

∂θ

∂f (x; θ)

∂θ
dx

=
∫ ∞
−∞

∂ln[f (x; θ)]

∂θ


2

f (x; θ)dx.

This integral is called Fisher information and is denoted by I(θ). It is an expec-

tation!
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We can see from the work above that

I(θ) =
∫ ∞
−∞

∂ln[f (x; θ)]

∂θ


2

f (x; θ)dx

or equivalently,

I(θ) = −
∫ ∞
−∞

∂2ln[f (x; θ)]

∂θ2
f (x; θ)dx.
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Example 1: Let X be N(θ, σ2), where −∞ < θ < ∞. and σ2 is known. Then

f (x; θ) =
1√

2πσ2
exp

−(x− θ)2

2σ2


and

ln[f (x; θ)] = −1

2
ln(2πσ2)− (x− θ)2

2σ2
.

Differentiating with respect to θ we have

∂ln[f (x; θ)]

∂θ
=

x− θ

σ2

and

∂2ln[f (x; θ)]

∂θ2
=
−1

σ2
.

No matter which version of I(θ) we use, we see that
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I(θ) = E


∂ln[f (X ; θ)]

∂θ


2


= −E

∂2ln[f (X ; θ)]

∂θ2

 =
1

σ2
.
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Example 2: Let X be binomial b(1, θ). Then

f (x; θ) = θx(1− θ)1−x

and

ln[f (x; θ)] = xln(θ) + (1− x)ln(1− θ).

∂ln[f (x; θ)]

∂θ
=

x

θ
− 1− x

1− θ

∂2ln[f (x; θ)]

∂θ2
=
−x

θ2
− 1− x

(1− θ)2
.

I(θ) = −E

−X

θ2
− 1−X

(1− θ)2



=
θ

θ2
+

1− θ

(1− θ)2
=

1

θ(1− θ)
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Now suppose that we have a random sample X1, X2, ..., Xn from a distribution with

pdf f (x; θ). The likelihood function is given by

L(θ) = f (x1; θ)f (x2; θ) · · · f (xn; θ)

and

ln[L(θ)] =
n∑

i=1
ln[f (xi; θ)]

which implies that
∂ln[L(θ)]

∂θ
=

n∑
i=1

∂ln[f (xi; θ)]

∂θ
.

Thus, the natural definition of Fisher information in a sample of size n is

In(θ) = E


∂ln[L(θ)]

∂θ


2
 .

Notice that for i 6= j, cross-product terms in this expectation are 0. By independence,

E

∂ln[f (Xi; θ)]

∂θ

∂ln[f (Xj; θ)]

∂θ


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= E

∂ln[f (Xi; θ)]

∂θ

 E

∂ln[f (Xj; θ)]

∂θ

 = 0

It follows that

In(θ) =
n∑

i=1
E


∂ln[f (Xi; θ)]

∂θ


2
 = nI(θ)

Theorem A Cramer-Rao Inequality

Let X1, . . . , Xn be i.i.d with density function f (x; θ).

Let T = u(X1, X2, ..., Xn) be an estimator of θ. We allow that T might be biased,

and denote its expectation by

E[T ] = E[u(X1, ..., Xn)] = k(θ).

It turns out that we can bound V ar(T ) from below using the Cramer-Rao in-

equality,

V ar(T ) ≥ [k′(θ)]2

nI(θ)
.
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If T = u(X1, X2, ..., Xn) is an unbiased estimator of θ, then k(θ) = θ and k′(θ) = 1.

In this case, the Cramer-Rao inequality becomes

V ar(T ) ≥ 1

nI(θ)
.

Recall from Examples 1 and 2 that 1
nI(θ) equals σ2/n and θ(1− θ)/n, respectively.

Thus, we see that in both cases the sample mean X̄ achieves the Rao-Cramer lower

bound.
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Definition Let T be an unbiased estimator of θ. The statistic T is called an

efficient estimator of θ if and only if the variance of T attains the Cramer-Rao

lower bound.

Definition The ratio of the Rao-Cramer lower bound to the actual variance of an

unbiased estimator of θ is called the efficiency of that estimator.

Example 3 Let X1, X2, ..., Xn be a random sample from a Poisson distribution

with mean θ > 0. We have seen that X̄ is the maximum likelihood estimator of θ.

f (x; θ) =
θxe−θ

x!

ln[f (x; θ)] = xln(θ)− θ − ln(x!)

∂ln[f (x; θ)]

∂θ
=

(x− θ)

θ

E


∂ln[f (X ; θ)]

∂θ


2
 =

σ2

θ2
=

θ

θ2
=

1

θ
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We see that the Rao-Cramer lower bound is θ/n, which is the variance of X̄ . Hence

X̄ is an efficient estimator of θ.

Consider a family of distributions {f (x; θ) : θ ∈ Ω} where Ω is an interval. Assum-

ing that we can interchange differentiation with integration in the manner described

above, we can determine the limiting distribution of the maximum likelihood esti-

mator θ̂.

In particular, if θ̂ denotes the maximum likelihood estimator and

Zn =
θ̂ − θ√

1
nI(θ)

then Zn has a N(0, 1) limiting distribution.

This implies that θ̂ is asymptotically unbiased and the asymptotic variance

of θ̂ is 1/[nI(θ)], which implies that θ̂ is asymptotically efficient.
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By using a Theorem, we can see that the statistic

θ̂ − θ√
1

nI(θ̂)

also has limiting distribution N(0, 1). This implies that a confidence interval for θ

with confidence level of approximately (1− α)100% is given by

θ̂ ± zα/2√
nI(θ̂)
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8.7 Sufficiency

Suppose X1, X2, ..., Xn is a random sample from a distribution that has pdf

f (x; θ), θ ∈ Ω. A statistic T = u(X1, X2, ..., Xn) can be viewed as a reduction of

the data.

We will be concerned with when it is possible to reduce the data into a statistic that

suffices for retaining all of the information in the sample about the parameter θ.

Suppose we have a statistic T = u(X1, X2, ..., Xn) that partitions the sample space

into

(X1, X2, ..., Xn) ∈ {(x1, x2, ..., xn) : u(x1, x2, .., xn) = t}
in such a way that the conditional probability distribution of X1, X2, ..., Xn given

T = t no longer depends on θ.

In this respect, T contains all of the information in the sample about θ, and we call

T a sufficient statistic.
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Example 4: Let X1, X2, ..., Xn be a random sample from the pdf

f (x; θ) = θx(1− θ)1−x

for x = 0, 1; 0 < θ < 1.

The statistic T = X1 + X2 + · · ·Xn has the pdf

fT (t) =
n!

t!(n− t)!
θt(n− θ)1−t

for t = 0, 1, 2, ..., n.

Consider the conditional probability

P (X1 = x1, X2 = x2, ..., Xn = xn|T = t)

This conditional probability obviously equals 0 when t 6= ∑
xi.

When t =
∑

xi,

P (X1 = x1, X2 = x2, ..., Xn = xn|T = t)
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∏n
i=1 θxi(1− θ)1−xi

n!
t!(n−t)!θ

t(1− θ)n−t

=
θ

∑
xi(1− θ)n−

∑
xi

n!
(
∑

xi)!(n−(
∑

xi))!
θ

∑
xi(1− θ)n−

∑
xi

=
(
∑

xi)!(n− (
∑

xi))!

n!

Notice that this does not involve θ so T =
∑

Xi is a sufficient statistic for θ.

Theorem A (factorization theorem): Let X1, X2, ..., Xn denote a random

sample that has pdf f (x; θ), θ ∈ Ω. The statistic T = u(X1, X2, ..., Xn) is a

sufficient statistic for θ if and only if we can find two nonnegative functions, g and

h such that

n∏
i=1

f (xi; θ) = g[u(x1, x2, ..., xn); θ]h(x1, x2, ..., xn)

where h(x1, x2, ..., xn) does not depend upon θ.
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Example 5: Let X1, X2, ..., Xn denote a random sample from a distribution with

pdf

f (x; θ) = θxθ−1

for 0 < x < 1 and θ > 0.

Use the factorization theorem to prove that

T = u(X1, X2, ..., Xn) = X1X2 · · ·Xn

is a sufficient statistic for θ.

The joint pdf of X1, X2, ..., Xn is

θn(x1x2 · · ·xn)θ−1 = [θn(x1x2 · · ·xn)θ]

 1

x1x2 · · ·xn


for 0 < xi < 1. In the factorization theorem we let

g[u(x1, x2, ..., xn); θ] = θn(x1x2 · · ·xn)θ
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and let

h(x1, x2, ..., xn) =
1

x1x2 · · ·xn

Since h does not depend on θ, the product X1X2 · · ·Xn is a sufficient statistic for θ.

Example 6: Let X1, X2, ..., Xn be a sample of size n from a Poisson distribution

with mean θ, 0 < θ < ∞. Show that

T =
n∑

i=1
Xi

is sufficient for θ. The joint pdf of X1, X2, ..., Xn is

n∏
i=1

θxie−θ

xi!

= [θ
∑

xie−nθ]

 1

x1!x2! · · ·xn!


In the factorization theorem we let

g[u(x1, x2, ..., xn); θ] = [θTe−nθ]
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and let

h(x1, x2, ..., xn) =

 1

x1!x2! · · ·xn!



Since h does not depend on θ, T is a sufficient statistic for θ.
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Exponential Families

One-parameter members of an exponential family have a density or frequency func-

tion of the form

f (x; θ) = exp[c(θ)T (x) + d(θ) + S(x)], x ∈ A

and equal to 0 for x not in A, where the set A does not depend on θ.

Let X1, X2, ..., Xn be a random sample of size n and has a joint pdf

n∏
i=1

f (xi; θ) = exp[c(θ)
n∑

i=1
T (xi) + nd(θ)]exp[

n∑
i=1

S(xi)]

We see from this result that
∑n

i=1 T (Xi) is a sufficent statistics.

Note: normal, binomial, Poisson, Gamma are members of this family!
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Corollary A: If T is sufficient for θ and if a maximum likelihood estimator θ̂ exists

uniquely, then θ̂ is a function of T .

The following theorem of Rao and Blackwell implies that in searching for a best un-

biased estimator, we may restrict our attention to functions of a sufficient statistic,

if a sufficient statistic exists.

This is helpful because there is usually only one unbiased estimator of θ based on a

sufficient statistic.

Theorem A Rao-Blackwell Theorem: Let θ̂ be an estimator of θ with E(θ̂2) < ∞
for all θ. Suppose that T is sufficient for θ and let θ̃ = E(θ̂|T ). Then, for all θ,

E(θ̃ − θ)2 ≤ E(θ̂ − θ)2

If an estimator is not a function of the sufficient statistic, it can be improved!
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