Chapter 8 Estimation of Parameters

 and Fitting of Probability Distributions8.6 Efficiency and the Cramer-Rao Lower Bound

Let X be a random variable with pdf $f(x ; \theta), \theta \in \Omega$ where the parameter space Ω is an interval. Note that,

$$
\int_{-\infty}^{\infty} f(x ; \theta) d x=1
$$

and, if we can differentiate under the integral sign,

$$
\frac{\partial \int_{-\infty}^{\infty} f(x ; \theta) d x}{\partial \theta}=\int_{-\infty}^{\infty} \frac{\partial f(x ; \theta)}{\partial \theta} d x=0
$$

Notice that,

$$
\int_{-\infty}^{\infty} \frac{\partial f(x ; \theta)}{\partial \theta} d x=\int_{-\infty}^{\infty} \frac{\partial \ln [f(x ; \theta)]}{\partial \theta} f(x ; \theta) d x=0
$$

Differentiating again, we have

$$
\int_{-\infty}^{\infty}\left[\frac{\partial^{2} \ln [f(x ; \theta)]}{\partial \theta^{2}} f(x ; \theta)+\frac{\partial \ln [f(x ; \theta)]}{\partial \theta} \frac{\partial f(x ; \theta)}{\partial \theta}\right] d x=0
$$

Notice that for the second term on the left side of the equation above we can write

$$
\begin{aligned}
& \int_{-\infty}^{\infty} \frac{\partial \ln [f(x ; \theta)]}{\partial \theta} \frac{\partial f(x ; \theta)}{\partial \theta} d x \\
= & \int_{-\infty}^{\infty}\left[\frac{\partial \ln [f(x ; \theta)]}{\partial \theta}\right]^{2} f(x ; \theta) d x
\end{aligned}
$$

This integral is called Fisher information and is denoted by $I(\theta)$. It is an expectation!

We can see from the work above that

$$
I(\theta)=\int_{-\infty}^{\infty}\left[\frac{\partial \ln [f(x ; \theta)]}{\partial \theta}\right]^{2} f(x ; \theta) d x
$$

or equivalently,

$$
I(\theta)=-\int_{-\infty}^{\infty} \frac{\partial^{2} \ln [f(x ; \theta)]}{\partial \theta^{2}} f(x ; \theta) d x .
$$

Example 1: Let X be $N\left(\theta, \sigma^{2}\right)$, where $-\infty<\theta<\infty$. and σ^{2} is known. Then

$$
f(x ; \theta)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} \exp \left[-\frac{(x-\theta)^{2}}{2 \sigma^{2}}\right]
$$

and

$$
\ln [f(x ; \theta)]=-\frac{1}{2} \ln \left(2 \pi \sigma^{2}\right)-\frac{(x-\theta)^{2}}{2 \sigma^{2}} .
$$

Differentiating with respect to θ we have

$$
\frac{\partial \ln [f(x ; \theta)]}{\partial \theta}=\frac{x-\theta}{\sigma^{2}}
$$

and

$$
\frac{\partial^{2} \ln [f(x ; \theta)]}{\partial \theta^{2}}=\frac{-1}{\sigma^{2}}
$$

No matter which version of $I(\theta)$ we use, we see that

$$
\begin{aligned}
& I(\theta)=E\left(\left[\frac{\partial \ln [f(X ; \theta)]}{\partial \theta}\right]^{2}\right) \\
& =-E\left[\frac{\partial^{2} \ln [f(X ; \theta)]}{\partial \theta^{2}}\right]=\frac{1}{\sigma^{2}}
\end{aligned}
$$

Example 2: Let X be binomial $b(1, \theta)$. Then

$$
f(x ; \theta)=\theta^{x}(1-\theta)^{1-x}
$$

and

$$
\begin{gathered}
\ln [f(x ; \theta)]=x \ln (\theta)+(1-x) \ln (1-\theta) \\
\frac{\partial \ln [f(x ; \theta)]}{\partial \theta}=\frac{x}{\theta}-\frac{1-x}{1-\theta} \\
\frac{\partial^{2} \ln [f(x ; \theta)]}{\partial \theta^{2}}=\frac{-x}{\theta^{2}}-\frac{1-x}{(1-\theta)^{2}} \\
I(\theta)=-E\left[\frac{-X}{\theta^{2}}-\frac{1-X}{(1-\theta)^{2}}\right] \\
=\frac{\theta}{\theta^{2}}+\frac{1-\theta}{(1-\theta)^{2}}=\frac{1}{\theta(1-\theta)}
\end{gathered}
$$

Now suppose that we have a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a distribution with pdf $f(x ; \theta)$. The likelihood function is given by

$$
L(\theta)=f\left(x_{1} ; \theta\right) f\left(x_{2} ; \theta\right) \cdots f\left(x_{n} ; \theta\right)
$$

and

$$
\ln [L(\theta)]=\sum_{i=1}^{n} \ln \left[f\left(x_{i} ; \theta\right)\right]
$$

which implies that

$$
\frac{\partial \ln [L(\theta)]}{\partial \theta}=\sum_{i=1}^{n} \frac{\partial \ln \left[f\left(x_{i} ; \theta\right)\right]}{\partial \theta}
$$

Thus, the natural definition of Fisher information in a sample of size n is

$$
I_{n}(\theta)=E\left(\left[\frac{\partial \ln [L(\theta)]}{\partial \theta}\right]^{2}\right)
$$

Notice that for $i \neq j$, cross-product terms in this expectation are 0 . By independence,

$$
E\left[\frac{\partial \ln \left[f\left(X_{i} ; \theta\right)\right]}{\partial \theta} \frac{\partial \ln \left[f\left(X_{j} ; \theta\right)\right]}{\partial \theta}\right]
$$

$$
=E\left[\frac{\partial \ln \left[f\left(X_{i} ; \theta\right)\right]}{\partial \theta}\right] E\left[\frac{\partial \ln \left[f\left(X_{j} ; \theta\right)\right]}{\partial \theta}\right]=0
$$

It follows that

$$
I_{n}(\theta)=\sum_{i=1}^{n} E\left(\left[\frac{\partial \ln \left[f\left(X_{i} ; \theta\right)\right]}{\partial \theta}\right]^{2}\right)=n I(\theta)
$$

Theorem A Cramer-Rao Inequality
Let X_{1}, \ldots, X_{n} be i.i.d with density function $f(x ; \theta)$.
Let $T=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ be an estimator of θ. We allow that T might be biased, and denote its expectation by

$$
E[T]=E\left[u\left(X_{1}, \ldots, X_{n}\right)\right]=k(\theta)
$$

It turns out that we can bound $\operatorname{Var}(T)$ from below using the Cramer-Rao inequality,

$$
\operatorname{Var}(T) \geq \frac{\left[k^{\prime}(\theta)\right]^{2}}{n I(\theta)}
$$

If $T=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an unbiased estimator of θ, then $k(\theta)=\theta$ and $k^{\prime}(\theta)=1$. In this case, the Cramer-Rao inequality becomes

$$
\operatorname{Var}(T) \geq \frac{1}{n I(\theta)} .
$$

Recall from Examples 1 and 2 that $\frac{1}{n I(\theta)}$ equals σ^{2} / n and $\theta(1-\theta) / n$, respectively. Thus, we see that in both cases the sample mean \bar{X} achieves the Rao-Cramer lower bound.

Definition Let T be an unbiased estimator of θ. The statistic T is called an efficient estimator of θ if and only if the variance of T attains the Cramer-Rao lower bound.
Definition The ratio of the Rao-Cramer lower bound to the actual variance of an unbiased estimator of θ is called the efficiency of that estimator.

Example 3 Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Poisson distribution with mean $\theta>0$. We have seen that \bar{X} is the maximum likelihood estimator of θ.

$$
\begin{gathered}
f(x ; \theta)=\frac{\theta^{x} e^{-\theta}}{x!} \\
\ln [f(x ; \theta)]=x \ln (\theta)-\theta-\ln (x!) \\
\frac{\partial \ln [f(x ; \theta)]}{\partial \theta}=\frac{(x-\theta)}{\theta} \\
E\left(\left[\frac{\partial \ln [f(X ; \theta)]]^{2}}{\partial \theta}\right]^{2}\right)=\frac{\sigma^{2}}{\theta^{2}}=\frac{\theta}{\theta^{2}}=\frac{1}{\theta}
\end{gathered}
$$

We see that the Rao-Cramer lower bound is θ / n, which is the variance of \bar{X}. Hence \bar{X} is an efficient estimator of θ.

Consider a family of distributions $\{f(x ; \theta): \theta \in \Omega\}$ where Ω is an interval. Assuming that we can interchange differentiation with integration in the manner described above, we can determine the limiting distribution of the maximum likelihood estimator $\hat{\theta}$.

In particular, if $\hat{\theta}$ denotes the maximum likelihood estimator and

$$
Z_{n}=\frac{\hat{\theta}-\theta}{\sqrt{\frac{1}{n I(\theta)}}}
$$

then Z_{n} has a $N(0,1)$ limiting distribution.
This implies that $\hat{\theta}$ is asymptotically unbiased and the asymptotic variance of $\hat{\theta}$ is $1 /[n I(\theta)]$, which implies that $\hat{\theta}$ is asymptotically efficient.

By using a Theorem, we can see that the statistic

$$
\frac{\hat{\theta}-\theta}{\sqrt{\frac{1}{n I(\hat{\theta})}}}
$$

also has limiting distribution $N(0,1)$. This implies that a confidence interval for θ with confidence level of approximately $(1-\alpha) 100 \%$ is given by

$$
\hat{\theta} \pm \frac{z_{\alpha / 2}}{\sqrt{n I(\hat{\theta})}}
$$

Suppose $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution that has pdf $f(x ; \theta), \theta \in \Omega$. A statistic $T=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ can be viewed as a reduction of the data.
We will be concerned with when it is possible to reduce the data into a statistic that suffices for retaining all of the information in the sample about the parameter θ.

Suppose we have a statistic $T=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ that partitions the sample space into

$$
\left(X_{1}, X_{2}, \ldots, X_{n}\right) \in\left\{\left(x_{1}, x_{2}, \ldots, x_{n}\right): u\left(x_{1}, x_{2}, . ., x_{n}\right)=t\right\}
$$

in such a way that the conditional probability distribution of $X_{1}, X_{2}, \ldots, X_{n}$ given $T=t$ no longer depends on θ.

In this respect, T contains all of the information in the sample about θ, and we call T a sufficient statistic.

Example 4: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from the pdf

$$
f(x ; \theta)=\theta^{x}(1-\theta)^{1-x}
$$

for $x=0,1 ; 0<\theta<1$.
The statistic $T=X_{1}+X_{2}+\cdots X_{n}$ has the pdf

$$
f_{T}(t)=\frac{n!}{t!(n-t)!} \theta^{t}(n-\theta)^{1-t}
$$

for $t=0,1,2, \ldots, n$.
Consider the conditional probability

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid T=t\right)
$$

This conditional probability obviously equals 0 when $t \neq \Sigma x_{i}$. When $t=\Sigma x_{i}$,

$$
P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n} \mid T=t\right)
$$

$$
\begin{aligned}
& \frac{\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{1-x_{i}}}{n!} \theta^{t}(1-\theta)^{n-t} \\
&= \frac{\theta^{\sum x_{i}}(1-\theta)^{n-\sum x_{i}}}{\left(\sum x_{i}\right)!\left(n-\left(\sum x_{i}\right)\right)!} \theta^{\sum x_{i}}(1-\theta)^{n-\sum x_{i}} \\
&= \frac{\left(\sum x_{i}\right)!\left(n-\left(\sum x_{i}\right)\right)!}{n!}
\end{aligned}
$$

Notice that this does not involve θ so $T=\sum X_{i}$ is a sufficient statistic for θ.

Theorem A (factorization theorem): Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample that has pdf $f(x ; \theta), \theta \in \Omega$. The statistic $T=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is a sufficient statistic for θ if and only if we can find two nonnegative functions, g and h such that

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=g\left[u\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; \theta\right] h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

where $h\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ does not depend upon θ.

Example 5: Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample from a distribution with pdf

$$
f(x ; \theta)=\theta x^{\theta-1}
$$

for $0<x<1$ and $\theta>0$.
Use the factorization theorem to prove that

$$
T=u\left(X_{1}, X_{2}, \ldots, X_{n}\right)=X_{1} X_{2} \cdots X_{n}
$$

is a sufficient statistic for θ.
The joint pdf of $X_{1}, X_{2}, \ldots, X_{n}$ is

$$
\theta^{n}\left(x_{1} x_{2} \cdots x_{n}\right)^{\theta-1}=\left[\theta^{n}\left(x_{1} x_{2} \cdots x_{n}\right)^{\theta}\right]\left(\frac{1}{x_{1} x_{2} \cdots x_{n}}\right)
$$

for $0<x_{i}<1$. In the factorization theorem we let

$$
g\left[u\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; \theta\right]=\theta^{n}\left(x_{1} x_{2} \cdots x_{n}\right)^{\theta}
$$

and let

$$
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\frac{1}{x_{1} x_{2} \cdots x_{n}}
$$

Since h does not depend on θ, the product $X_{1} X_{2} \cdots X_{n}$ is a sufficient statistic for θ.

Example 6: Let $X_{1}, X_{2}, \ldots, X_{n}$ be a sample of size n from a Poisson distribution with mean $\theta, 0<\theta<\infty$. Show that

$$
T=\sum_{i=1}^{n} X_{i}
$$

is sufficient for θ. The joint pdf of $X_{1}, X_{2}, \ldots, X_{n}$ is

$$
\begin{gathered}
\prod_{i=1}^{n} \frac{\theta^{x_{i}} e^{-\theta}}{x_{i}!} \\
=\left[\theta^{\sum x_{i}} e^{-n \theta}\right]\left(\frac{1}{x_{1}!x_{2}!\cdots x_{n}!}\right)
\end{gathered}
$$

In the factorization theorem we let

$$
g\left[u\left(x_{1}, x_{2}, \ldots, x_{n}\right) ; \theta\right]=\left[\theta^{T} e^{-n \theta}\right]
$$

and let

$$
h\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\left(\frac{1}{x_{1}!x_{2}!\cdots x_{n}!}\right)
$$

Since h does not depend on θ, T is a sufficient statistic for θ.

Exponential Families

One-parameter members of an exponential family have a density or frequency function of the form

$$
f(x ; \theta)=\exp [c(\theta) T(x)+d(\theta)+S(x)], x \in A
$$

and equal to 0 for x not in A, where the set A does not depend on θ.

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n and has a joint pdf

$$
\prod_{i=1}^{n} f\left(x_{i} ; \theta\right)=\exp \left[c(\theta) \sum_{i=1}^{n} T\left(x_{i}\right)+n d(\theta)\right] \exp \left[\sum_{i=1}^{n} S\left(x_{i}\right)\right]
$$

We see from this result that $\sum_{i=1}^{n} T\left(X_{i}\right)$ is a sufficent statistics.

Note: normal, binomial, Poisson, Gamma are members of this family!

Corollary A: If T is sufficient for θ and if a maximum likelihood estimator $\hat{\theta}$ exists uniquely, then $\hat{\theta}$ is a function of T.

The following theorem of Rao and Blackwell implies that in searching for a best unbiased estimator, we may restrict our attention to functions of a sufficient statistic, if a sufficient statistic exists.

This is helpful because there is usually only one unbiased estimator of θ based on a sufficient statistic.

Theorem A Rao-Blackwell Theorem: Let $\hat{\theta}$ be an estimator of θ with $E\left(\hat{\theta}^{2}\right)<\infty$ for all θ. Suppose that T is sufficient for θ and let $\tilde{\theta}=E(\hat{\theta} \mid T)$. Then, for all θ,

$$
E(\tilde{\theta}-\theta)^{2} \leq E(\hat{\theta}-\theta)^{2}
$$

If an estimator is not a function of the sufficient statistic, it can be improved!

