
Chapter 9 Testing Hypothesis and Assessing Goodness of Fit

9.5 Generalized Likelihood Ratio Tests

Finally, we consider the case of testing a composite null hypothesis H0 against a

composite alternative hypothesis HA.

Let X1, X2, ..., Xn denote n independent random variables having the probability

density functions fi(xi; θ1, θ2, ..., θm), for i = 1, 2, ..., n.

Let Ω denote the set of all parameter points (θ1, ..., θm). Let ω be a subset of Ω.

We wish to test the (simple or composite) hypothesis

H0 : (θ1, θ2, ..., θm) ∈ ω

against all possible alternative hypotheses.
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Define the likelihood functions

L(ω) =
n∏

i=1
fi(xi; θ1, θ2, ..., θm)

for (θ1, θ2, ..., θm) ∈ ω and

L(Ω) =
n∏

i=1
fi(xi; θ1, θ2, ..., θm)

for (θ1, θ2, ..., θm) ∈ Ω.

Let L(ω̂) and L(Ω̂) denote the maxima of the functions, when constrained to their

respective domains.

The ratio of L(ω̂) to L(Ω̂) is called the likelihood ratio and is denoted by

λ(x1, ..., xn) =
L(ω̂)

L(Ω̂)
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The likelihood ratio test states that H0 is rejected if and only if

λ(x1, ..., xn) ≤ λ0,

where the number λ0 satisfies the significance level,

α = P [λ(X1, ..., Xn) ≤ λ0; H0].

It is often difficult to determine the distribution of λ(X1, ..., Xn) under the null hy-

pothesis, which is required for computing λ0.

Under certain regularity conditions, a general large sample approximation is avail-

able. In particular, the statistic

−2 ln[λ(X1, ..., Xn)]

has an approximate chi-square distribution with m− q degrees of freedom for large

samples when H0 is true. Here m is the dimension of the parameter space Ω, and q

is the dimension of the restricted subset of the parameter space ω.
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Example 1: Let X be N(θ1, θ2), with Ω = {(θ1, θ2) : −∞ < θ1 < ∞, 0 < θ2 <

∞}. We want to test

H0 : θ1 = 0

versus the composite alternative

HA : θ1 6= 0

Thus, ω = {(θ1, θ2) : θ1 = 0, 0 < θ2 < ∞}.

We can think of Ω as a 2-dimensional space, and ω as a 1-dimensional subspace.

L(Ω) =

 1

2πθ2

n/2

exp

−
∑n

i=1(xi − θ1)
2

2θ2


and

L(ω) =

 1

2πθ2

n/2

exp

−
∑n

i=1 x2
i

2θ2

 .
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By setting the derivative of ln[L(ω)] with respect to θ2 equal to 0, we find the the

mle of θ2, when θ1 = 0, is
∑n

i=1 x2
i/n.

This implies that

L(ω̂) =

 1

2π
∑n

i=1 x2
i/n


n/2

exp

−
∑n

i=1 x2
i

2
∑n

i=1 x2
i/n



=

 ne−1

2π
∑

x2
i


n/2

Without the restriction that θ1 = 0 we find that the mle (θ̂1, θ̂2) is given by

θ̂1 = x̄

and

θ̂2 =
n∑

i=1
(xi − x̄)2/n
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Thus

L(Ω̂) =

 1

2π
∑

(xi − x̄)2/n


n/2

exp

−
∑

(xi − x̄)2

2
∑

(xi − x̄)2/n



=

 ne−1

2π
∑

(xi − x̄)2


n/2

and

λ =


∑

(xi − x̄)2∑
x2

i


n/2

We reject H0 if and only if λ ≤ λ0, where λ0 satisfies

P [λ(X1, ..., Xn) ≤ λ0; H0] = α.
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It can be shown that λ ≤ λ0 if and only if

√
n|x̄|√∑

(xi − x̄)2/(n− 1)
≥

√
(n− 1)(λ

−2/n
0 − 1)

From this, we see the the likelihood ratio test is equivalent to a t-test in which we

reject the null hypothesis if

|t(x1, .., xn)| ≥ tα/2

where

t(X1, ..., Xn) =

√
nX̄√∑

(Xi − X̄)2/(n− 1)

has a t-distribution with n− 1 degrees of freedom under the null hypothesis.

7


