Chapter 9 Testing Hypothesis and Assessing Goodness of Fit

9.5 Generalized Likelihood Ratio Tests

Finally, we consider the case of testing a composite null hypothesis H_{0} against a composite alternative hypothesis H_{A}.

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote n independent random variables having the probability density functions $f_{i}\left(x_{i} ; \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)$, for $i=1,2, \ldots, n$.

Let Ω denote the set of all parameter points $\left(\theta_{1}, \ldots, \theta_{m}\right)$. Let ω be a subset of Ω. We wish to test the (simple or composite) hypothesis

$$
H_{0}:\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in \omega
$$

against all possible alternative hypotheses.

Define the likelihood functions

$$
L(\omega)=\prod_{i=1}^{n} f_{i}\left(x_{i} ; \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)
$$

for $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in \omega$ and

$$
L(\Omega)=\prod_{i=1}^{n} f_{i}\left(x_{i} ; \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)
$$

for $\left(\theta_{1}, \theta_{2}, \ldots, \theta_{m}\right) \in \Omega$.
Let $L(\hat{\omega})$ and $L(\hat{\Omega})$ denote the maxima of the functions, when constrained to their respective domains.

The ratio of $L(\hat{\omega})$ to $L(\hat{\Omega})$ is called the likelihood ratio and is denoted by

$$
\lambda\left(x_{1}, \ldots, x_{n}\right)=\frac{L(\hat{\omega})}{L(\hat{\Omega})}
$$

The likelihood ratio test states that H_{0} is rejected if and only if

$$
\lambda\left(x_{1}, \ldots, x_{n}\right) \leq \lambda_{0},
$$

where the number λ_{0} satisfies the significance level,

$$
\alpha=P\left[\lambda\left(X_{1}, \ldots, X_{n}\right) \leq \lambda_{0} ; H_{0}\right] .
$$

It is often difficult to determine the distribution of $\lambda\left(X_{1}, \ldots, X_{n}\right)$ under the null hypothesis, which is required for computing λ_{0}.

Under certain regularity conditions, a general large sample approximation is available. In particular, the statistic

$$
-2 \ln \left[\lambda\left(X_{1}, \ldots, X_{n}\right)\right]
$$

has an approximate chi-square distribution with $m-q$ degrees of freedom for large samples when H_{0} is true. Here m is the dimension of the parameter space Ω, and q is the dimension of the restricted subset of the parameter space ω.

Example 1: Let X be $N\left(\theta_{1}, \theta_{2}\right)$, with $\Omega=\left\{\left(\theta_{1}, \theta_{2}\right):-\infty<\theta_{1}<\infty, 0<\theta_{2}<\right.$ $\infty\}$. We want to test

$$
H_{0}: \theta_{1}=0
$$

versus the composite alternative

$$
H_{A}: \theta_{1} \neq 0
$$

Thus, $\omega=\left\{\left(\theta_{1}, \theta_{2}\right): \theta_{1}=0,0<\theta_{2}<\infty\right\}$.
We can think of Ω as a 2 -dimensional space, and ω as a 1 -dimensional subspace.

$$
L(\Omega)=\left(\frac{1}{2 \pi \theta_{2}}\right)^{n / 2} \exp \left[-\frac{\sum_{i=1}^{n}\left(x_{i}-\theta_{1}\right)^{2}}{2 \theta_{2}}\right]
$$

and

$$
L(\omega)=\left(\frac{1}{2 \pi \theta_{2}}\right)^{n / 2} \exp \left[-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \theta_{2}}\right]
$$

By setting the derivative of $\ln [L(\omega)]$ with respect to θ_{2} equal to 0 , we find the the mle of θ_{2}, when $\theta_{1}=0$, is $\sum_{i=1}^{n} x_{i}^{2} / n$.

This implies that

$$
\begin{gathered}
L(\hat{\omega})=\left(\frac{1}{2 \pi \sum_{i=1}^{n} x_{i}^{2} / n}\right)^{n / 2} \exp \left[-\frac{\sum_{i=1}^{n} x_{i}^{2}}{2 \sum_{i=1}^{n} x_{i}^{2} / n}\right] \\
=\left(\frac{n e^{-1}}{2 \pi \sum x_{i}^{2}}\right)^{n / 2}
\end{gathered}
$$

Without the restriction that $\theta_{1}=0$ we find that the mle $\left(\hat{\theta}_{1}, \hat{\theta}_{2}\right)$ is given by

$$
\hat{\theta}_{1}=\bar{x}
$$

and

$$
\hat{\theta}_{2}=\sum_{i=1}^{n}\left(x_{i}-\bar{x}\right)^{2} / n
$$

Thus

$$
\begin{gathered}
L(\hat{\Omega})=\left[\frac{1}{2 \pi \Sigma\left(x_{i}-\bar{x}\right)^{2} / n}\right]^{n / 2} \exp \left[-\frac{\Sigma\left(x_{i}-\bar{x}\right)^{2}}{2 \Sigma\left(x_{i}-\bar{x}\right)^{2} / n}\right] \\
=\left[\frac{n e^{-1}}{2 \pi \Sigma\left(x_{i}-\bar{x}\right)^{2}}\right]^{n / 2}
\end{gathered}
$$

and

$$
\lambda=\left[\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{\sum x_{i}^{2}}\right]^{n / 2}
$$

We reject H_{0} if and only if $\lambda \leq \lambda_{0}$, where λ_{0} satisfies

$$
P\left[\lambda\left(X_{1}, \ldots, X_{n}\right) \leq \lambda_{0} ; H_{0}\right]=\alpha .
$$

It can be shown that $\lambda \leq \lambda_{0}$ if and only if

$$
\frac{\sqrt{n}|\bar{x}|}{\sqrt{\Sigma\left(x_{i}-\bar{x}\right)^{2} /(n-1)}} \geq \sqrt{(n-1)\left(\lambda_{0}^{-2 / n}-1\right)}
$$

From this, we see the the likelihood ratio test is equivalent to a t-test in which we reject the null hypothesis if

$$
\left|t\left(x_{1}, . ., x_{n}\right)\right| \geq t_{\alpha / 2}
$$

where

$$
t\left(X_{1}, \ldots, X_{n}\right)=\frac{\sqrt{n} \bar{X}}{\sqrt{\Sigma\left(X_{i}-\bar{X}\right)^{2} /(n-1)}}
$$

has a t -distribution with $n-1$ degrees of freedom under the null hypothesis.

