Chapter 2 Random Variables

2.3 Functions of a Random Variable

Let X denote a random variable with density function f(z), and and define Y =
g(X) for some function g. We want to find the pdf of g(X).

There are three approaches:
1. Distribution-function technique
2. Change-of-variables or transformations technique

3. Using generating functions

We will cover 1 and 2, for now.



Distribution Function Technique

First find the cdf of Y then differentiate w.r.t Y, to obtain:
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fly) = dyF(y)

Note: Let X denote a random variable with cdf F'(z), and define Y = g(X) for
some function g. Let Fy denote the cdf of Y.
Fy(y) = P(Y <y) = P(¢(X) <y) = P(4)

where A ={z: g(z) < y}.

Example:



Transformations of Discrete Variables

Example: Let X have the Poisson pdf
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Then X has space A={0,1,2,3,4, ..., }.

Now define a new random variable Y = 4X. Then the space A maps onto the
space of Y, which we’ll denote by B = {0,4,8,12,...}.

Under this map, there is a one-to-one correspondence between points in A and points

in B.

Define f(y) = P(Y =y),
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y=0,4,8, ...



Transformations of Continuous Variables

Example: Let X have pdf
fw) = 2

for 0 <z < 1. A={x : 0 < x < 1}, is the space where f(z) > 0.

Define the random variable Y = 8X?3. Under the transformation y = 82° A is
mapped onto the space of Y, B={y : 0 < y < 8}. Also the mapping is one-to-one
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because we can find the inverse x = yT

Also, note that fl‘; = 6}/3.

et 0<a<b<S8.

a1/3 b1/3
P(a<Y<b)—P(2<X<2)

Let I = a'/3/2 and uw = b'/3 /2
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Let’s rewrite this integral by changing the variable of integration to y = S8z*. Then

Pla<Y <b) ./a”z(y;/g) ( ! )dy
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Since this is true for all 0 < a < b < 1, the pdf of Y must be the integrand,
1

for 0 <y < 8.



Proposition B Let X be a continuous random variable with density f(x) and let
Y = g(X) where g is differentiable, strictly monotonic function on some interval 1.
Suppose f(z) = 0if x is not in 1. Then Y has the density function

(o) = fxla W) 070
for y such that y = g(z) for some z, and fy(y) = 0if y # g(x) for any x in I.

Note: It is easiest to deal with functions g(x) that are monotone.

We actually need:

(1) The set B of points where f(y) > 0 and

(2) The integrand of the integral on y to which P(a <Y < b) is equal.

So, sometimes the conditions of the Proposition B (Theorem) are:



Let X have a pdf of the continuous type and let A be the one-dimensional space
where f(z) > 0. Consider the random variable Y = g(X), where y = g(z) defines a
one-to-one transformation that maps A onto the set B. Let j;g_l(y) be continuous
and not equal to zero in B.

Example:



Proposition C (read)

Proposition D Let the random variable U be uniform on [0, 1], and let X = F~1(U).
Then the cdf of X is F'.

PX <z]=P[F'(U) <z =P[U < F(z)]

Since U has a uniform distribution,

PU < Fx)) = [

,  du=F(x)

Thus X has distribution function F'.
This is a useful theorem because it tells us how to simulate observations from chosen
distributions. Many quality random number generation algorithms are available to

draw from a uniform distribution on (0,1). These can give us U. Now, by applying
the result given above we can obtain X = F~1(U).

Example:



