
Chapter 2 Random Variables

2.3 Functions of a Random Variable

Let X denote a random variable with density function f (x), and and define Y =

g(X) for some function g. We want to find the pdf of g(X).

There are three approaches:

1. Distribution-function technique

2. Change-of-variables or transformations technique

3. Using generating functions

We will cover 1 and 2, for now.
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Distribution Function Technique

First find the cdf of Y then differentiate w.r.t Y , to obtain:

f (y) =
d

dy
F (y)

Note: Let X denote a random variable with cdf F (x), and define Y = g(X) for

some function g. Let FY denote the cdf of Y .

FY (y) = P (Y ≤ y) = P (g(X) ≤ y) = P (A)

where A = {x : g(x) ≤ y}.

Example:
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Transformations of Discrete Variables

Example: Let X have the Poisson pdf

f (x) =
µxe−µ

x!
for x = 0, 1, 2, ...

Then X has space A={0, 1, 2, 3, 4, ..., }.

Now define a new random variable Y = 4X . Then the space A maps onto the

space of Y , which we’ll denote by B = {0, 4, 8, 12, ...}.

Under this map, there is a one-to-one correspondence between points inA and points

in B.

Define f (y) = P (Y = y),

f (y) = P (Y = y) = P (X = y/4) =
µy/4e−µ

(y/4)!
, y = 0, 4, 8, ...
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Transformations of Continuous Variables

Example: Let X have pdf

f (x) = 2x

for 0 < x < 1. A={x : 0 < x < 1}, is the space where f (x) > 0.

Define the random variable Y = 8X3. Under the transformation y = 8x3 A is

mapped onto the space of Y , B={y : 0 < y < 8}. Also the mapping is one-to-one

because we can find the inverse x = y1/3

2 .

Also, note that dx
dy = 1

6y2/3 .

Let 0 < a < b < 8.

P (a < Y < b) = P

a1/3

2
< X <

b1/3

2


Let l = a1/3/2 and u = b1/3/2

=
∫ u

l
2xdx
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Let’s rewrite this integral by changing the variable of integration to y = 8x3. Then

P (a < Y < b) =
∫ b

a
2

y1/3

2


 1

6y2/3

 dy

=
∫ b

a

1

6y1/3
dy

Since this is true for all 0 < a < b < 1, the pdf of Y must be the integrand,

f (y) =
1

6y1/3

for 0 < y < 8.
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Proposition B Let X be a continuous random variable with density f (x) and let

Y = g(X) where g is differentiable, strictly monotonic function on some interval I .

Suppose f (x) = 0 if x is not in I . Then Y has the density function

fY (y) = fX(g−1(y))

∣∣∣∣∣∣
d

dy
g−1(y)

∣∣∣∣∣∣
for y such that y = g(x) for some x, and fY (y) = 0 if y 6= g(x) for any x in I .

Note: It is easiest to deal with functions g(x) that are monotone.

We actually need:

(1) The set B of points where f (y) > 0 and

(2) The integrand of the integral on y to which P (a < Y < b) is equal.

So, sometimes the conditions of the Proposition B (Theorem) are:
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Let X have a pdf of the continuous type and let A be the one-dimensional space

where f (x) > 0. Consider the random variable Y = g(X), where y = g(x) defines a

one-to-one transformation that maps A onto the set B. Let d
dyg

−1(y) be continuous

and not equal to zero in B.

Example:
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Proposition C (read)

Proposition D Let the random variable U be uniform on [0, 1], and let X = F−1(U).

Then the cdf of X is F .

P [X ≤ x] = P [F−1(U) ≤ x] = P [U ≤ F (x)]

Since U has a uniform distribution,

P [U ≤ F (x)] =
∫ F (x)

0
du = F (x)

Thus X has distribution function F .

This is a useful theorem because it tells us how to simulate observations from chosen

distributions. Many quality random number generation algorithms are available to

draw from a uniform distribution on (0,1). These can give us U . Now, by applying

the result given above we can obtain X = F−1(U).

Example:
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