2.3 Functions of a Random Variable

Let X denote a random variable with density function f(x), and and define Y = g(X) for some function g. We want to find the pdf of g(X).

There are three approaches:

- 1. Distribution-function technique
- 2. Change-of-variables or transformations technique
- 3. Using generating functions

We will cover 1 and 2, for now.

Distribution Function Technique

First find the cdf of Y then differentiate w.r.t Y, to obtain:

$$f(y) = \frac{d}{dy}F(y)$$

Note: Let X denote a random variable with cdf F(x), and define Y = g(X) for some function g. Let F_Y denote the cdf of Y.

$$F_Y(y) = P(Y \le y) = P(g(X) \le y) = P(A)$$

where $A = \{x : g(x) \le y\}.$

Example:

Transformations of Discrete Variables

Example: Let X have the Poisson pdf

$$f(x) = \frac{\mu^x e^{-\mu}}{x!}$$

for x = 0, 1, 2, ...

Then X has space $\mathcal{A} = \{0, 1, 2, 3, 4, ..., \}$.

Now define a new random variable Y = 4X. Then the space \mathcal{A} maps **onto** the space of Y, which we'll denote by $\mathcal{B} = \{0, 4, 8, 12, ...\}$.

Under this map, there is a one-to-one correspondence between points in \mathcal{A} and points in \mathcal{B} .

Define f(y) = P(Y = y),

$$f(y) = P(Y = y) = P(X = y/4) = \frac{\mu^{y/4}e^{-\mu}}{(y/4)!}, \ y = 0, 4, 8, \dots$$

Transformations of Continuous Variables

Example: Let X have pdf

$$f(x) = 2x$$

for 0 < x < 1. $A = \{x : 0 < x < 1\}$, is the space where f(x) > 0.

Define the random variable $Y = 8X^3$. Under the transformation $y = 8x^3 \mathcal{A}$ is mapped onto the space of Y, $\mathcal{B} = \{y : 0 < y < 8\}$. Also the mapping is one-to-one because we can find the inverse $x = \frac{y^{1/3}}{2}$.

Also, note that $\frac{dx}{dy} = \frac{1}{6y^{2/3}}$.

Let 0 < a < b < 8.

$$P(a < Y < b) = P\left(\frac{a^{1/3}}{2} < X < \frac{b^{1/3}}{2}\right)$$

Let $l = a^{1/3}/2$ and $u = b^{1/3}/2$

$$=\int_{l}^{u}2xdx$$

Let's rewrite this integral by changing the variable of integration to $y = 8x^3$. Then

$$\begin{aligned} P(a < Y < b) &= \int_{a}^{b} 2\left(\frac{y^{1/3}}{2}\right) \left(\frac{1}{6y^{2/3}}\right) dy \\ &= \int_{a}^{b} \frac{1}{6y^{1/3}} dy \end{aligned}$$

Since this is true for all 0 < a < b < 1, the pdf of Y must be the integrand,

$$f(y) = \frac{1}{6y^{1/3}}$$

for 0 < y < 8.

Proposition B Let X be a continuous random variable with density f(x) and let Y = g(X) where g is differentiable, strictly monotonic function on some interval I. Suppose f(x) = 0 if x is not in I. Then Y has the density function

$$f_Y(y) = f_X(g^{-1}(y)) \left| \frac{d}{dy} g^{-1}(y) \right|$$

for y such that y = g(x) for some x, and $f_Y(y) = 0$ if $y \neq g(x)$ for any x in I.

Note: It is easiest to deal with functions g(x) that are monotone.

We actually need:

- (1) The set \mathcal{B} of points where f(y) > 0 and
- (2) The integrand of the integral on y to which P(a < Y < b) is equal.

So, sometimes the conditions of the Proposition B (Theorem) are:

Let X have a pdf of the continuous type and let \mathcal{A} be the one-dimensional space where f(x) > 0. Consider the random variable Y = g(X), where y = g(x) defines a one-to-one transformation that maps \mathcal{A} onto the set \mathcal{B} . Let $\frac{d}{dy}g^{-1}(y)$ be continuous and not equal to zero in \mathcal{B} .

Example:

Proposition C (read)

Proposition D Let the random variable U be uniform on [0, 1], and let $X = F^{-1}(U)$. Then the cdf of X is F.

$$P[X \le x] = P[F^{-1}(U) \le x] = P[U \le F(x)]$$

Since U has a uniform distribution,

$$P[U \le F(x)] = \int_0^{F(x)} du = F(x)$$

Thus X has distribution function F.

This is a useful theorem because it tells us how to simulate observations from chosen distributions. Many quality random number generation algorithms are available to draw from a uniform distribution on (0,1). These can give us U. Now, by applying the result given above we can obtain $X = F^{-1}(U)$.

Example: