Chapter 2 Random Variables

2.3 Functions of a Random Variable

Let X denote a random variable with density function $f(x)$, and and define $Y=$ $g(X)$ for some function g. We want to find the pdf of $g(X)$.

There are three approaches:

1. Distribution-function technique
2. Change-of-variables or transformations technique
3. Using generating functions

We will cover 1 and 2 , for now.

Distribution Function Technique

First find the cdf of Y then differentiate w.r.t Y, to obtain:

$$
f(y)=\frac{d}{d y} F(y)
$$

Note: Let X denote a random variable with $\operatorname{cdf} F(x)$, and define $Y=g(X)$ for some function g. Let F_{Y} denote the cdf of Y.

$$
F_{Y}(y)=P(Y \leq y)=P(g(X) \leq y)=P(A)
$$

where $A=\{x: g(x) \leq y\}$.
Example:

Transformations of Discrete Variables

Example: Let X have the Poisson pdf

$$
f(x)=\frac{\mu^{x} e^{-\mu}}{x!}
$$

for $x=0,1,2, \ldots$

Then X has space $\mathcal{A}=\{0,1,2,3,4, \ldots$,$\} .$

Now define a new random variable $Y=4 X$. Then the space \mathcal{A} maps onto the space of Y, which we'll denote by $\mathcal{B}=\{0,4,8,12, \ldots\}$.

Under this map, there is a one-to-one correspondence between points in \mathcal{A} and points in \mathcal{B}.

Define $f(y)=P(Y=y)$,

$$
f(y)=P(Y=y)=P(X=y / 4)=\frac{\mu^{y / 4} e^{-\mu}}{(y / 4)!}, y=0,4,8, \ldots
$$

Transformations of Continuous Variables

Example: Let X have pdf

$$
f(x)=2 x
$$

for $0<x<1$. $\mathcal{A}=\{x: 0<x<1\}$, is the space where $f(x)>0$.
Define the random variable $Y=8 X^{3}$. Under the transformation $y=8 x^{3} \mathcal{A}$ is mapped onto the space of $Y, \mathcal{B}=\{y: 0<y<8\}$. Also the mapping is one-to-one because we can find the inverse $x=\frac{y^{1 / 3}}{2}$.

Also, note that $\frac{d x}{d y}=\frac{1}{6 y^{2 / 3}}$.
Let $0<a<b<8$.

$$
P(a<Y<b)=P\left(\frac{a^{1 / 3}}{2}<X<\frac{b^{1 / 3}}{2}\right)
$$

Let $l=a^{1 / 3} / 2$ and $u=b^{1 / 3} / 2$

$$
=\int_{l}^{u} 2 x d x
$$

Let's rewrite this integral by changing the variable of integration to $y=8 x^{3}$. Then

$$
\begin{aligned}
P(a<Y<b) & =\int_{a}^{b} 2\left(\frac{y^{1 / 3}}{2}\right)\left(\frac{1}{6 y^{2 / 3}}\right) d y \\
& =\int_{a}^{b} \frac{1}{6 y^{1 / 3}} d y
\end{aligned}
$$

Since this is true for all $0<a<b<1$, the pdf of Y must be the integrand,

$$
f(y)=\frac{1}{6 y^{1 / 3}}
$$

for $0<y<8$.

Proposition B Let X be a continuous random variable with density $f(x)$ and let $Y=g(X)$ where g is differentiable, strictly monotonic function on some interval I. Suppose $f(x)=0$ if x is not in I. Then Y has the density function

$$
f_{Y}(y)=f_{X}\left(g^{-1}(y)\right)\left|\frac{d}{d y} g^{-1}(y)\right|
$$

for y such that $y=g(x)$ for some x, and $f_{Y}(y)=0$ if $y \neq g(x)$ for any x in I.

Note: It is easiest to deal with functions $g(x)$ that are monotone.
We actually need:
(1) The set \mathcal{B} of points where $f(y)>0$ and
(2) The integrand of the integral on y to which $P(a<Y<b)$ is equal.

So, sometimes the conditions of the Proposition B (Theorem) are:

Let X have a pdf of the continuous type and let \mathcal{A} be the one-dimensional space where $f(x)>0$. Consider the random variable $Y=g(X)$, where $y=g(x)$ defines a one-to-one transformation that maps \mathcal{A} onto the set \mathcal{B}. Let $\frac{d}{d y} g^{-1}(y)$ be continuous and not equal to zero in \mathcal{B}.

Example:

Proposition C (read)
Proposition D Let the random variable U be uniform on $[0,1]$, and let $X=F^{-1}(U)$. Then the cdf of X is F.

$$
P[X \leq x]=P\left[F^{-1}(U) \leq x\right]=P[U \leq F(x)]
$$

Since U has a uniform distribution,

$$
P[U \leq F(x)]=\int_{0}^{F(x)} d u=F(x)
$$

Thus X has distribution function F.

This is a useful theorem because it tells us how to simulate observations from chosen distributions. Many quality random number generation algorithms are available to draw from a uniform distribution on $(0,1)$. These can give us U. Now, by applying the result given above we can obtain $X=F^{-1}(U)$.

Example:

