## Chapter 3 Joint Distributions

### 3.2 Discrete Random Variables

Definition: Given a random experiment with a sample space $\Omega$, consider two random variables $X_{1}$ and $X_{2}$, which assign to each element in $\Omega$ one and only one ordered pair of number $X_{1}(\omega)=x_{1}$ and $X_{2}(\omega)=x_{2}$.

The space of $X_{1}$ and $X_{2}$ is the set of ordered pairs $\mathcal{A}=\left\{\left(x_{1}, x_{2}\right): x_{1}=X_{1}(\omega), x_{2}=X_{2}(\omega), \omega \in \Omega\right\}$.

Example 1: Consider the random experiment of flipping a coin three times. $\Omega=\left\{\omega_{1}, \omega_{2}, \ldots, \omega_{8}\right\}$.
$\omega_{1}=T T T, \omega_{2}=T T H, \omega_{3}=T H T, \omega_{4}=H T T, \omega_{5}=T H H, \omega_{6}=H T H$, $\omega_{7}=H H T, \omega_{8}=H H H$.

Let $X_{1}$ equal the number of heads, and let $X_{2}$ equal the number of tails. $X_{1}\left(\omega_{1}\right)=0, X_{1}\left(\omega_{2}\right)=X_{1}\left(\omega_{3}\right)=X_{1}\left(\omega_{4}\right)=1, X_{1}\left(\omega_{5}\right)=X_{1}\left(\omega_{6}\right)=X_{1}\left(\omega_{7}\right)=2$, $X_{1}\left(\omega_{8}\right)=3$.

Clearly, $X_{2}=3-X_{1}$ for all $\omega$.
Consider the event $A=\{(2,1)\} \subset \mathcal{A}$. Let $C=\left\{\omega_{5}, \omega_{6}, \omega_{7}\right\} \subset \Omega$.

$$
P\left[\left(X_{1}, X_{2}\right) \in A\right]=P[C]
$$

Of course, if the flips are independent and it is a fair coin

$$
P\left[\omega_{5}\right]=P\left[\omega_{6}\right]=P\left[\omega_{7}\right]=(1 / 2)^{3}=1 / 8
$$

and

$$
P[C]=1 / 8+1 / 8+1 / 8=3 / 8
$$

Example 2: Let $\mathcal{A}$ consists of all pairs of positive integers $(x, y)$ for $x=1,2, \ldots$ and $y=1,2, \ldots$. Show that $f(x, y)=\frac{9}{4^{x+y}}$ is a proper probability density function for the pair $(X, Y)$ with space $\mathcal{A}$.

Certainly $f(x, y)$ is positive on the discrete space $\mathcal{A}$. We need to show that

$$
\begin{gathered}
\sum_{x=1}^{\infty} \sum_{y=1}^{\infty} f(x, y)=1 \\
\sum_{x=1}^{\infty} \sum_{y=1}^{\infty} f(x, y)=\sum_{x=1}^{\infty} \frac{9}{4^{x}} \sum_{y=1}^{\infty}(1 / 4)^{y}
\end{gathered}
$$

Using our knowledge that for $r \in(0,1) \sum_{y=1}^{\infty} r^{y}=r /(1-r)$ we have,

$$
\sum_{x=1}^{\infty} \frac{9}{4^{x}} \sum_{y=1}^{\infty}(1 / 4)^{y}=\sum_{x=1}^{\infty} \frac{9}{4^{x}}(1 / 3)
$$

Now consider a pair of discrete random variables $X_{1}$ and $X_{2}$, with joint frequency function or joint pdf $p\left(x_{1}, x_{2}\right)$. We can find the marginal pdf of $X_{1}, f_{X_{1}}\left(x_{1}\right)$ or by your book notation $p_{X_{1}}\left(x_{1}\right)$,

$$
p_{X_{1}}\left(x_{1}\right)=\sum_{x_{2}} p\left(x_{1}, x_{2}\right)
$$

and similarly,

$$
p_{X_{2}}\left(x_{2}\right)=\sum_{x_{1}} p\left(x_{1}, x_{2}\right) .
$$

Example Table
3. Continuous Random Variables

Example 3: Consider the pdf of a pair of random variables $X, Y$ defined by $f(x, y)=6 x^{2} y$ on the square $0<x<1,0<y<1 . f(x, y)=0$ outside of this square.
Find $P[0<X<3 / 4,1 / 3<Y<2]$

$$
\begin{gathered}
P(0<X<3 / 4,1 / 3<Y<2)=\int_{1 / 3}^{2} \int_{0}^{3 / 4} f(x, y) d x d y \\
=\int_{1 / 3}^{1} \int_{0}^{3 / 4} 6 x^{2} y d x d y+\int_{1}^{2} \int_{0}^{3 / 4} 0 d x d y \\
=\int_{1 / 3}^{1} \int_{0}^{3 / 4} 6 x^{2} y d x d y=\int_{1 / 3}^{1} y\left[\left.2 x^{3}\right|_{0} ^{3 / 4}\right] d y \\
=54 / 64 \int_{1 / 3}^{1} y d y=54 / 64\left[y^{2} /\left.2\right|_{1 / 3} ^{1}\right] \\
=54 / 64(1 / 2-1 / 18)=3 / 8
\end{gathered}
$$

Note: Note this is probability is the volume under the surface $f(x, y)$ and above the rectangular set in the $x y$-plane.

The definition of the distribution function for two variables is the expected generalization of the definition in one dimension.

$$
F(x, y)=P[X \leq x, Y \leq y]
$$

If $X$ and $Y$ are of the continuous type and have pdf $f(x, y)$ then

$$
F(x, y)=\int_{-\infty}^{y} \int_{-\infty}^{x} f(u, v) d u d v
$$

Also, at points of continuity of $f(x, y)$ we have

$$
\frac{\partial^{2} F(x, y)}{\partial x \partial y}=f(x, y)
$$

When we have two random variables $X_{1}$ and $X_{2}$, it is common to call $f\left(x_{1}, x_{2}\right)$ the joint pdf and $F\left(x_{1}, x_{2}\right)$ the joint distribution or the joint cdf.
For a pair of continuous random variables, marginal densities are

$$
\begin{aligned}
& f_{X_{1}}\left(x_{1}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{2} \\
& f_{X_{2}}\left(x_{2}\right)=\int_{-\infty}^{\infty} f\left(x_{1}, x_{2}\right) d x_{1}
\end{aligned}
$$

### 3.5 Conditional Distributions

Recall that the conditional probability of an event $A$ given an event $B$ is given by

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

Let $x_{1}$ be a value such that $f_{X_{1}}\left(x_{1}\right)>0$. Then, the conditional pdf of $X_{2}$ given $X_{1}=x_{1}$ is defined by

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}
$$

Similarly, when $f_{X_{2}}\left(x_{2}\right)>0$ the conditional pdf of $X_{1}$ given $X_{2}=x_{2}$ is

$$
f_{X_{1} \mid X_{2}}\left(x_{1} \mid x_{2}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{X_{2}}\left(x_{2}\right)}
$$

Examples

### 3.4 Independent Random Variables

Definition: Let random variables $X_{1}$ and $X_{2}$ have joint cdf $F\left(x_{1}, x_{2}\right)$. The random variables $X_{1}$ and $X_{2}$ are said to be independent if and only if $F\left(x_{1}, x_{2}\right)=$ $F_{X_{1}}\left(x_{1}\right) F_{X_{2}}\left(x_{2}\right)$.
or equivalently,

Definition: Let random variables $X_{1}$ and $X_{2}$ have joint pdf $f\left(x_{1}, x_{2}\right)$. The random variables $X_{1}$ and $X_{2}$ are said to be independent if and only if $f\left(x_{1}, x_{2}\right)=$ $f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)$.

Example: Suppose that $X_{1}$ and $X_{2}$ are independent and find $f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)$.

$$
f_{X_{2} \mid X_{1}}\left(x_{2} \mid x_{1}\right)=\frac{f\left(x_{1}, x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=\frac{f_{X_{1}}\left(x_{1}\right) f_{X_{2}}\left(x_{2}\right)}{f_{X_{1}}\left(x_{1}\right)}=f_{X_{2}}\left(x_{2}\right)
$$

Example

