
Chapter 3 Joint Distributions

3.6 Functions of Jointly Distributed Random Variables

Discrete Random Variables:

Let f (x, y) denote the joint pdf of random variables X and Y with A denoting the

two-dimensional space of points for which f (x, y) > 0.

Let u = g1(x, y) and v = g2(x, y) define a one-to-one transformation that maps A
onto the space of U and V , B.

The joint pdf of U = g1(X, Y ) and V = g2(X, Y ) is fUV (u, v) for (u, v) ∈ B, where

x = h1(u, v), y = h2(u, v) is the inverse of u = g1(x, y), v = g2(x, y)
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Example 1: Let X and Y be two independent random variables that have Poisson

distributions with means µ1 and µ2, respectively.

f (x, y) =
µx

1µ
y
2e

−µ1−µ2

x!y!

for x = 0, 1, 2, ..., and y = 0, 1, 2, ...,.

The space A of points (x, y) such that f (x, y) > 0, is just all pairs of nonnegative

integers.

We want to find the pdf of U = X + Y . It will help to use the change of variables

technique. This requires defining a second transformation V , so that a one-to-one

transformation between pairs (x, y) and (u, v) is created.

Define V = Y . Then u = x + y and v = y, represent a one-to-one transformation

that maps A onto

B={(u, v) : v = 0, 1, ..., u and u} = 0, 1, 2, ....}.
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For (u, v) ∈ B, the inverse functions are given by x = u− v and y = v. Then,

f (u, v) =
µu−v

1 µv
2e

−µ1−µ2

(u− v)!v!

From this, we can find the marginal pdf of U

fU(u) =
u∑

v=0
f (u, v)

=
e−µ1−µ2

u!

u∑
v=0

u!

(u− v)!v!
µu−v

1 µv
2

=
(µ1 + µ2)

ue−µ1−µ2

u!
u = 0, 1, 2, ....

From this we can see that U = X + Y is Poisson with mean µ1 + µ2.
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Continuous Random Variables:

Let u = g1(x, y) and v = g2(x, y) define a one-to-one transformation that maps a

two-dimensional setA in the xy plane onto a (two-dimensional) set B in the uv plane.

If we express x and y in terms of u and v we have

x = h1(u, v) and y = h2(u, v).

The determinant of order 2,

J =

∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂y
∂v

∣∣∣∣∣∣∣
is called the Jacobian of the transformation is a function of (u, v). We’ll assume

that these first-order derivatives are continuous, and the Jacobian J is not identical

to 0 in A.
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Example 2: Let A be the square A={(x, y) : 0 < x < 1, 0 < y < 1}.

Consider the transformation

u = g1(x, y) = x + y

v = g2(x, y) = x− y

To apply the Jacobian of the transformation we first find the inverse transformation.

x = h1(u, v) =
1

2
(u + v)

y = h2(u, v) =
1

2
(u− v)
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To determine B in the uv plane, note how the boundaries of A are transformed into

the boundaries of B.

x = 0 into 0 = 1
2(u + v)

x = 1 into 1 = 1
2(u + v)

y = 0 into 0 = 1
2(u− v)

y = 1 into 1 = 1
2(u− v).

The Jacobian is given by

J =

∣∣∣∣∣∣∣
∂x
∂u

∂x
∂v

∂y
∂u

∂x2
∂v

∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣
1
2

1
2

1
2 −1

2

∣∣∣∣∣∣∣ = −1

2

Note: Your book calls this J−1(h1(u, v), h2(u, v)) and uses the notation J(x, y).

Still need to take absolute value, |J−1(h1(u, v), h2(u, v)| as in Book Proposition A.

Examples
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Convolution: Finding the pdf of the sum of two independent random variables.

Let X and Y be independent random variables with respective pdfs fX(x) and fY (y).

Let Z = X + Y and W = Y .

We have the one-to-one transformation x = z −w and y = w with Jacobian J = 1.

Therefore the joint pdf of Z and W is

fZW (z, w) = fX(z − w)fY (w)

and the marginal of Z = X + Y is given by

fZ(z) =
∫ ∞
−∞ fX(z − w)fY (w)dw

Very useful!
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3.7 Extrema and Order Statistics

Let X1, X2, ..., Xn denote a random sample of the continuous type having a pdf f (x)

and cdf F (x).

Let X(1) be the smallest of these, X(2) be the second smallest, and so on with X(n)

denoting the largest.

X(1) < X(2) < X(3) < ... < X(n)

X(k) is called the kth order statistic of the sample for i = 1, 2, ..., n.

The joint pdf of X(1), ..., X(n) is given by

f (x(1), ..., x(n)) = n!f (x(1))f (x(2)) · · · f (x(n))

when a < x(1) < x(2) < ... < x(n) < b.

This is quite consistent with intuition.
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Consider, and vector (x1, x2, ..., xn). Because of independence we have the joint pdf

of X1, .., Xn is

f (x1, x2, .., xn) = f (x1)f (x2) · · · f (xn)

However, the order statistics are unaltered for all n! permutations of (x1, x2, ..., xn),

which results in the coefficient in the pdf of X(1), X(2), ..., X(n) above.

Next, consider the maximum of the sample X(n). Let Fn(x(n)) denote the cdf of

X(n). We find the cdf and pdf of X(n) written in terms of F and f .

P [X(n) ≤ x(n)] = P [X1 ≤ x(n), X2 ≤ x(n), ..., Xn ≤ x(n)]

=
n∏

i=1
P [Xi ≤ x(n)] = [F (x(n))]

n

Thus, Fn(x(n)) = [F (x(n))]
n.
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We find the pdf of X(n) by differentiating the cdf.

fn(x(n)) = F ′
n(x(n)) = n[F (x(n))]

n−1f (x(n))

for a < x(n) < b

Now consider the minimum of the sample X(1).

1− F1(x(1)) = P [X(1) > x(1)] =

n∏
i=1

P [Xi > x(1)] =
n∏

i=1
[1− F (x(1))] = [1− F (x(1))]

n

We see that

F1(x(1)) = 1− [1− F (x(1))]
n

and the pdf of X(1) is found by taking a derivative

f1(x(1)) = F ′
1(x(1)) = n[1− F (x(1))]

n−1f (x(1)).

for a < x(1) < b.
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In general, suppose we are interested in the pdf of the kth order statistic , for

1 ≤ k ≤ n. To find Fk(x(k)), we notice that the probability of {X(k) ≤ x(k)} is just

the probability that at least k of the X ’s are less than x(k)

The chance that X ≤ x(k) is F (x(k)), so we find that

Fk(x(k)) = P [X(k) ≤ x(k)]

=
n∑

i=k

n!

(n− i)!(i)!
F (x(k))

i[1− F (x(k))]
n−i

and fk(x(k)) is just found by taking the derivative of Fk(x(k)).

However, by applying an interesting identity in analysis, it can be shown that fk(x(k))

simplifies to

fk(x(k)) =
n!

(k − 1)!(n− k)!
[F (x(k))]

k−1[1− F (x(k))]
n−kf (x(k))

The above is Theorem A in Book.
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