## Chapter 3 Joint Distributions

3.6 Functions of Jointly Distributed Random Variables

Discrete Random Variables:

Let $f(x, y)$ denote the joint pdf of random variables $X$ and $Y$ with $\mathcal{A}$ denoting the two-dimensional space of points for which $f(x, y)>0$.

Let $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$ define a one-to-one transformation that maps $\mathcal{A}$ onto the space of $U$ and $V, \mathcal{B}$.

The joint pdf of $U=g_{1}(X, Y)$ and $V=g_{2}(X, Y)$ is $f_{U V}(u, v)$ for $(u, v) \in \mathcal{B}$, where $x=h_{1}(u, v), y=h_{2}(u, v)$ is the inverse of $u=g_{1}(x, y), v=g_{2}(x, y)$

Example 1: Let $X$ and $Y$ be two independent random variables that have Poisson distributions with means $\mu_{1}$ and $\mu_{2}$, respectively.

$$
f(x, y)=\frac{\mu_{1}^{x} \mu_{2}^{y} e^{-\mu_{1}-\mu_{2}}}{x!y!}
$$

for $x=0,1,2, \ldots$, and $y=0,1,2, \ldots$,.
The space $\mathcal{A}$ of points $(x, y)$ such that $f(x, y)>0$, is just all pairs of nonnegative integers.

We want to find the pdf of $U=X+Y$. It will help to use the change of variables technique. This requires defining a second transformation $V$, so that a one-to-one transformation between pairs $(x, y)$ and $(u, v)$ is created.

Define $V=Y$. Then $u=x+y$ and $v=y$, represent a one-to-one transformation that maps $\mathcal{A}$ onto
$\mathcal{B}=\{(u, v): v=0,1, \ldots, u$ and $u\}=0,1,2, \ldots\}.$.

For $(u, v) \in \mathcal{B}$, the inverse functions are given by $x=u-v$ and $y=v$. Then,

$$
f(u, v)=\frac{\mu_{1}^{u-v} \mu_{2}^{v} e^{-\mu_{1}-\mu_{2}}}{(u-v)!v!}
$$

From this, we can find the marginal pdf of $U$

$$
\begin{gathered}
f_{U}(u)=\sum_{v=0}^{u} f(u, v) \\
=\frac{e^{-\mu_{1}-\mu_{2}}}{u!} \sum_{v=0}^{u} \frac{u!}{(u-v)!v!} \mu_{1}^{u-v} \mu_{2}^{v} \\
=\frac{\left(\mu_{1}+\mu_{2}\right)^{u} e^{-\mu_{1}-\mu_{2}}}{u!}
\end{gathered}
$$

$u=0,1,2, \ldots$.
From this we can see that $U=X+Y$ is Poisson with mean $\mu_{1}+\mu_{2}$.

Continuous Random Variables:

Let $u=g_{1}(x, y)$ and $v=g_{2}(x, y)$ define a one-to-one transformation that maps a two-dimensional set $\mathcal{A}$ in the $x y$ plane onto a (two-dimensional) set $\mathcal{B}$ in the $u v$ plane.

If we express $x$ and $y$ in terms of $u$ and $v$ we have
$x=h_{1}(u, v)$ and $y=h_{2}(u, v)$.

The determinant of order 2 ,

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|
$$

is called the Jacobian of the transformation is a function of $(u, v)$. We'll assume that these first-order derivatives are continuous, and the Jacobian $J$ is not identical to 0 in $\mathcal{A}$.

Example 2: Let $\mathcal{A}$ be the square $\mathcal{A}=\{(x, y): 0<x<1,0<y<1\}$.
Consider the transformation

$$
\begin{aligned}
& u=g_{1}(x, y)=x+y \\
& v=g_{2}(x, y)=x-y
\end{aligned}
$$

To apply the Jacobian of the transformation we first find the inverse transformation.

$$
\begin{aligned}
& x=h_{1}(u, v)=\frac{1}{2}(u+v) \\
& y=h_{2}(u, v)=\frac{1}{2}(u-v)
\end{aligned}
$$

To determine $\mathcal{B}$ in the $u v$ plane, note how the boundaries of $\mathcal{A}$ are transformed into the boundaries of $\mathcal{B}$.
$x=0$ into $0=\frac{1}{2}(u+v)$
$x=1$ into $1=\frac{1}{2}(u+v)$
$y=0$ into $0=\frac{1}{2}(u-v)$
$y=1$ into $1=\frac{1}{2}(u-v)$.
The Jacobian is given by

$$
J=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial x_{2}}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
\frac{1}{2} & -\frac{1}{2}
\end{array}\right|=-\frac{1}{2}
$$

Note: Your book calls this $J^{-1}\left(h_{1}(u, v), h_{2}(u, v)\right)$ and uses the notation $J(x, y)$.

Still need to take absolute value, $\mid J^{-1}\left(h_{1}(u, v), h_{2}(u, v) \mid\right.$ as in Book Proposition A.

Examples

Convolution: Finding the pdf of the sum of two independent random variables.

Let $X$ and $Y$ be independent random variables with respective pdfs $f_{X}(x)$ and $f_{Y}(y)$. Let $Z=X+Y$ and $W=Y$.

We have the one-to-one transformation $x=z-w$ and $y=w$ with Jacobian $J=1$.

Therefore the joint pdf of $Z$ and $W$ is

$$
f_{Z W}(z, w)=f_{X}(z-w) f_{Y}(w)
$$

and the marginal of $Z=X+Y$ is given by

$$
f_{Z}(z)=\int_{-\infty}^{\infty} f_{X}(z-w) f_{Y}(w) d w
$$

Very useful!

### 3.7 Extrema and Order Statistics

Let $X_{1}, X_{2}, \ldots, X_{n}$ denote a random sample of the continuous type having a pdf $f(x)$ and $\operatorname{cdf} F(x)$.

Let $X_{(1)}$ be the smallest of these, $X_{(2)}$ be the second smallest, and so on with $X_{(n)}$ denoting the largest.

$$
X_{(1)}<X_{(2)}<X_{(3)}<\ldots<X_{(n)}
$$

$X_{(k)}$ is called the $k$ th order statistic of the sample for $i=1,2, \ldots, n$.

The joint pdf of $X_{(1)}, \ldots, X_{(n)}$ is given by

$$
f\left(x_{(1)}, \ldots, x_{(n)}\right)=n!f\left(x_{(1)}\right) f\left(x_{(2)}\right) \cdots f\left(x_{(n)}\right)
$$

when $a<x_{(1)}<x_{(2)}<\ldots<x_{(n)}<b$.
This is quite consistent with intuition.

Consider, and vector $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$. Because of independence we have the joint pdf of $X_{1}, . ., X_{n}$ is

$$
f\left(x_{1}, x_{2}, . ., x_{n}\right)=f\left(x_{1}\right) f\left(x_{2}\right) \cdots f\left(x_{n}\right)
$$

However, the order statistics are unaltered for all $n!$ permutations of $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, which results in the coefficient in the pdf of $X_{(1)}, X_{(2)}, \ldots, X_{(n)}$ above.

Next, consider the maximum of the sample $X_{(n)}$. Let $F_{n}\left(x_{(n)}\right)$ denote the cdf of $X_{(n)}$. We find the cdf and pdf of $X_{(n)}$ written in terms of $F$ and $f$.

$$
\begin{gathered}
P\left[X_{(n)} \leq x_{(n)}\right]=P\left[X_{1} \leq x_{(n)}, X_{2} \leq x_{(n)}, \ldots, X_{n} \leq x_{(n)}\right] \\
=\prod_{i=1}^{n} P\left[X_{i} \leq x_{(n)}\right]=\left[F\left(x_{(n)}\right)\right]^{n}
\end{gathered}
$$

Thus, $F_{n}\left(x_{(n)}\right)=\left[F\left(x_{(n)}\right)\right]^{n}$.

We find the pdf of $X_{(n)}$ by differentiating the cdf.

$$
f_{n}\left(x_{(n)}\right)=F_{n}^{\prime}\left(x_{(n)}\right)=n\left[F\left(x_{(n)}\right)\right]^{n-1} f\left(x_{(n)}\right)
$$

for $a<x_{(n)}<b$
Now consider the minimum of the sample $X_{(1)}$.

$$
\begin{gathered}
1-F_{1}\left(x_{(1)}\right)=P\left[X_{(1)}>x_{(1)}\right]= \\
\prod_{i=1}^{n} P\left[X_{i}>x_{(1)}\right]=\prod_{i=1}^{n}\left[1-F\left(x_{(1)}\right)\right]=\left[1-F\left(x_{(1)}\right)\right]^{n}
\end{gathered}
$$

We see that

$$
F_{1}\left(x_{(1)}\right)=1-\left[1-F\left(x_{(1)}\right)\right]^{n}
$$

and the pdf of $X_{(1)}$ is found by taking a derivative

$$
f_{1}\left(x_{(1)}\right)=F_{1}^{\prime}\left(x_{(1)}\right)=n\left[1-F\left(x_{(1)}\right)\right]^{n-1} f\left(x_{(1)}\right) .
$$

for $a<x_{(1)}<b$.

In general, suppose we are interested in the pdf of the $k$ th order statistic, for $1 \leq k \leq n$. To find $F_{k}\left(x_{(k)}\right)$, we notice that the probability of $\left\{X_{(k)} \leq x_{(k)}\right\}$ is just the probability that at least $k$ of the $X^{\prime}$ s are less than $x_{(k)}$
The chance that $X \leq x_{(k)}$ is $F\left(x_{(k)}\right)$, so we find that

$$
\begin{gathered}
F_{k}\left(x_{(k)}\right)=P\left[X_{(k)} \leq x_{(k)}\right] \\
=\sum_{i=k}^{n} \frac{n!}{(n-i)!(i)!} F\left(x_{(k)}\right)^{i}\left[1-F\left(x_{(k)}\right)\right]^{n-i}
\end{gathered}
$$

and $f_{k}\left(x_{(k)}\right)$ is just found by taking the derivative of $F_{k}\left(x_{(k)}\right)$.

However, by applying an interesting identity in analysis, it can be shown that $f_{k}\left(x_{(k)}\right)$ simplifies to

$$
f_{k}\left(x_{(k)}\right)=\frac{n!}{(k-1)!(n-k)!}\left[F\left(x_{(k)}\right)\right]^{k-1}\left[1-F\left(x_{(k)}\right)\right]^{n-k} f\left(x_{(k)}\right)
$$

The above is Theorem A in Book.

