Chapter 4 Expected Values

4.3 Covariance and Correlation

Definition Let X and Y be two random variables with means μ_{X} and μ_{Y} and variances σ_{X}^{2} and σ_{Y}^{2}, repectively.

Consider the mathematical expectation

$$
\begin{gathered}
E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]=E\left[X Y-\mu_{Y} X-\mu_{X} Y+\mu_{X} \mu_{Y}\right] \\
=E[X Y]-\mu_{X} \mu_{Y}
\end{gathered}
$$

This expectation is called the covariance of X and Y.

If σ_{X} and σ_{Y} are positive,

$$
\rho=\frac{E\left[\left(X-\mu_{X}\right)\left(Y-\mu_{Y}\right)\right]}{\sigma_{X} \sigma_{Y}}=\frac{\operatorname{Cov}(X, Y)}{\sigma_{X} \sigma_{Y}}
$$

is called the correlation coefficient of X and Y.
ρ measures the linear association of X and Y and has the following properties.

- $-1 \leq \rho \leq 1$.
- $\rho=1$ if and only if $Y=a+b X$ with probability equal to 1 for some $b>0$
- $\rho=-1$ if and only if $Y=a+b X$ with probability equal to 1 , for some $b<0$
- ρ remains the same under location-scale transforms of X and Y.
- ρ measures the extent of linear association.
- ρ is 0 if X and Y are independent.

Let $f(x, y)$ denote the joint pdf of X and Y. If $E\left[e^{t_{1} X+t_{2} Y}\right]$ exists in a neighborhood of $(0,0)$, it is denoted by $M\left(t_{1}, t_{2}\right)$ and is called the moment generating function of X and Y.

In the case of continuous random variables

$$
\frac{\partial^{k+m} M\left(t_{1}, t_{2}\right)}{\partial t_{1}^{k} \partial t_{2}^{m}}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} x^{k} y^{m} e^{t_{1} x+t_{2} y} f(x, y) d x d y
$$

so that we can compute various moments by evaluating these partial derivatives at $\left(t_{1}, t_{2}\right)=(0,0)$.

$$
\begin{gathered}
\mu_{X}=\frac{\partial M(0,0)}{\partial t_{1}} \\
\sigma_{X}^{2}=\frac{\partial^{2} M(0,0)}{\partial t_{1}^{2}}-\mu_{X}^{2} \\
\operatorname{Cov}(X, Y)=\frac{\partial^{2} M(0,0)}{\partial t_{1} \partial t_{2}}-\mu_{X} \mu_{Y}
\end{gathered}
$$

4.4 Condtional Expectation

Recall the example:

Let X_{1} and X_{2} have joint pdf $f\left(x_{1}, x_{2}\right)=6 x_{2}$ for $0<x_{2}<x_{1}<1$.

The marginal pdf of X_{1} is

$$
f_{1}\left(x_{1}\right)=\int_{0}^{x_{1}} 6 x_{2} d x_{2}=3 x_{1}^{2}
$$

for $0<x_{1}<1$. The conditional pdf of X_{2} given x_{1} is

$$
f_{2 \mid 1}\left(x_{2} \mid x_{1}\right)=\frac{2 x_{2}}{x_{1}^{2}}
$$

The conditional mean or conditional expectation of X_{2} given $X_{1}=x_{1}$ is

$$
E\left[X_{2} \mid x_{1}\right]=\int_{0}^{x_{1}} x_{2}\left(2 x_{2} / x_{1}^{2}\right) d x_{2}=2 x_{1} / 3
$$

We can view $Y=2 X_{1} / 3$ as a random variable and find its distribution function

$$
\begin{aligned}
F(y) & =P(Y \leq y)=P\left(X_{1} \leq \frac{3 y}{2}\right) \\
& =\int_{0}^{3 y / 2} 3 x_{1}^{2} d x_{1}=\frac{27 y^{3}}{8}
\end{aligned}
$$

for $0 \leq y<2 / 3$.
By taking its derivative we can find the pdf of Y.

$$
f(y)=F^{\prime}(y)=\frac{81 y^{2}}{8}
$$

Thus,

$$
E[Y]=\int_{0}^{2 / 3} y\left(81 y^{2} / 8\right) d y=\frac{1}{2}
$$

and

$$
\operatorname{Var}(Y)=\int_{0}^{2 / 3} y^{2}\left(81 y^{2} / 8\right) d y-\frac{1}{4}=\frac{1}{60}
$$

The marginal pdf of X_{2} is

$$
f_{2}\left(x_{2}\right)=\int_{x_{2}}^{1} 6 x_{2} d x_{1}=6 x_{2}\left(1-x_{2}\right)
$$

Knowing this, we can easily find that $E\left[X_{2}\right]=1 / 2$ and $\operatorname{Var}\left(X_{2}\right)=1 / 20$.

In general, if $Y=E\left[X_{2} \mid X_{1}\right]$ then

$$
E[Y]=E\left[E\left[X_{2} \mid X_{1}\right]\right]=E\left[X_{2}\right]
$$

and

$$
\operatorname{Var}(Y)=\operatorname{Var}\left(E\left[X_{2} \mid X_{1}\right]\right) \leq \operatorname{Var}\left(X_{2}\right)
$$

To be specific

$$
\operatorname{Var}\left(X_{2}\right)=E\left[\left(X_{2}-E\left[X_{2} \mid X_{1}\right]\right)^{2}\right]+E\left[\left(E\left[X_{2} \mid X_{1}\right]-\mu_{2}\right)^{2}\right]
$$

