Chapter 4 Expected Values

A Derivation: The Bivariate Normal Distribution

Let Z_{1} and Z_{2} be independent $N(0,1)$ random variables.

Define new random variables:

$$
\begin{aligned}
& X=a_{X} Z_{1}+b_{X} Z_{2}+c_{X} \\
& Y=a_{Y} Z_{1}+b_{Y} Z_{2}+c_{Y}
\end{aligned}
$$

Define new constants:

$$
\begin{aligned}
& a_{X}=\sqrt{(1+\rho) / 2} \sigma_{X}, b_{X}=\sqrt{(1-\rho) / 2} \sigma_{X}, c_{X}=\mu_{Y} \\
& a_{Y}=\sqrt{(1+\rho) / 2} \sigma_{Y}, b_{Y}=-\sqrt{(1-\rho) / 2} \sigma_{Y}, c_{Y}=\mu_{Y}
\end{aligned}
$$

and

$$
\begin{aligned}
& E(X)=\mu_{X}, \operatorname{Var}(X)=\sigma_{X}^{2} \\
& E(Y)=\mu_{Y}, \operatorname{Var}(Y)=\sigma_{Y}^{2} \\
& \rho_{X Y}=\rho
\end{aligned}
$$

Let $D=a_{X} b_{Y}-a_{Y} b_{X}=-\sqrt{1-\rho^{2}} \sigma_{X} \sigma_{Y}$

Solve for Z_{1} and Z_{2}.

$$
\begin{aligned}
& Z_{1}=\frac{\sigma_{Y}\left(X-\mu_{X}\right)+\sigma_{X}\left(Y-\mu_{Y}\right)}{\sqrt{2(1+\rho)} \sigma_{X} \sigma_{Y}} \\
& Z_{2}=\frac{\sigma_{Y}\left(X-\mu_{X}\right)+\sigma_{X}\left(Y-\mu_{Y}\right)}{\sqrt{2(1-\rho)} \sigma_{X} \sigma_{Y}}
\end{aligned}
$$

Also, $J=1 / D=\frac{1}{-\sqrt{1-\rho^{2}} \sigma_{X} \sigma_{Y}}$
and we have

$$
\begin{aligned}
& f_{X Y}(x, y)=\frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} Z_{1}^{2}\right) \frac{1}{\sqrt{2 \pi}} \exp \left(-\frac{1}{2} Z_{2}^{2}\right)\left(\frac{1}{\sqrt{1-\rho^{2}} \sigma_{X} \sigma_{Y}}\right) \\
& =\frac{1}{2 \pi \sigma_{X} \sigma_{Y} \sqrt{1-\rho^{2}}} \exp \left(-\frac{1}{2\left(1-\rho^{2}\right)}\left[\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}\right]\right) \\
& -\infty<x<\infty,-\infty<y<\infty
\end{aligned}
$$

a bivariate normal pdf!

Section 3.3, Example F Bivariate Normal Density

$f_{X Y}(x, y)$ is constant if

$$
\frac{\left(x-\mu_{X}\right)^{2}}{\sigma_{X}^{2}}+\frac{\left(y-\mu_{Y}\right)^{2}}{\sigma_{Y}^{2}}-\frac{2 \rho\left(x-\mu_{X}\right)\left(y-\mu_{Y}\right)}{\sigma_{X} \sigma_{Y}}=\mathrm{constant}
$$

The locus of such points is an ellipse centered at $\left(\mu_{X}, \mu_{y}\right)$.

Section 3.3 Example F Marginal Density of $X, f_{X}(x)=\int_{-\infty}^{\infty} f_{X Y}(x, y) d y$

Make a change of variables, $u=\left(x-\mu_{X}\right) / \sigma_{X}$ and $v=\left(y-\mu_{Y}\right) / \sigma_{Y}$, then

$$
f_{X}(x)=\frac{1}{2 \pi \sigma_{X} \sqrt{1-\rho^{2}}} \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}\left(u^{2}+v^{2}-2 \rho u v\right)\right] d v
$$

Let's complete the square to evaluate the integral,

$$
u^{2}+v^{2}-2 \rho u v=(v-\rho u)^{2}+u^{2}\left(1-\rho^{2}\right)
$$

Now,

$$
f_{X}(x)=\frac{1}{2 \pi \sigma_{X} \sqrt{1-\rho^{2}}} \exp \left(-u^{2} / 2\right) \int_{-\infty}^{\infty} \exp \left[-\frac{1}{2\left(1-\rho^{2}\right)}(v-\rho u)^{2}\right] d v
$$

Recognize the integral?

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma_{X}} \exp \left(-(1 / 2)\left[\left(x-\mu_{x}\right)^{2} / \sigma_{X}^{2}\right]\right)
$$

Section 3.5 Example C Conditional Density of Y given $X=x$.

$$
f_{Y \mid X}(y \mid x)=\frac{f_{X Y}(x, y)}{f_{X}(x)}
$$

After some messy algebra, we see this is a normal density with mean $\mu_{Y}+\rho\left(x-\mu_{X}\right) \sigma_{Y} / \sigma_{X}$ and variance $\sigma_{Y}^{2}\left(1-\rho^{2}\right)$

Conditional mean is

$$
E(Y \mid X)=\mu_{Y}+\rho\left(X-\mu_{X}\right) \sigma_{Y} / \sigma_{X}
$$

What about mgf of a bivariate normal distribution? $M\left(t_{1}, t_{2}\right)=\ldots$ try it!

4.3 Covariance and Correlation

p.130-131 Develop Expressions for linear combinations of random variables.
$\operatorname{Cov}(a+X, Y)=\operatorname{Cov}(X, Y)$
$\operatorname{Cov}(a X, b Y)=a b \operatorname{Cov}(X, Y)$
$\operatorname{Cov}(X, Y+Z)=\operatorname{Cov}(X, Y)+\operatorname{Cov}(X, Z)$
$\operatorname{Cov}(a W+b X, c Y+d Z)=a c \operatorname{Cov}(W, Y)+b c \operatorname{Cov}(X, Y)+a d \operatorname{Cov}(W, Z)+b d \operatorname{Cov}(X, Y)$

Theorem A Suppose that $U=a+\sum_{i=1}^{n} b_{i} X_{i}$ and $V=c+\sum_{j=1}^{m} d_{j} Y_{j}$, Then

$$
\operatorname{Cov}(U, V)=\sum_{i=1}^{n} \sum_{j=1}^{m} b_{i} d_{j} \operatorname{Cov}\left(X_{i}, Y_{j}\right)
$$

Corollary A

$$
\operatorname{Var}\left(a+\sum_{i=1}^{n} b_{i} X_{i}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} b_{i} b_{j} \operatorname{Cov}\left(X_{i}, X_{j}\right)
$$

Example BVN $\operatorname{Cov}(X, Y)=a_{x} a_{y}+b_{x} b_{y}$

If the X_{i} are independent, then $\operatorname{Cov}\left(X_{i}, Y_{i}\right)=0$ for $i \neq j$, and
Corollary B $\operatorname{Var}\left(\sum_{i=1}^{n} X_{i}\right)=\sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right)$, if the X_{i} are independent.
What about expectations?

4.4 Conditional Expectation and Prediction

Recall, the conditional expectation of Y given $X=x$ is

$$
E(Y \mid X=x)=\Sigma_{y} y p_{Y \mid X}(y \mid x) \text { (discrete case) }
$$

and

$$
E(Y \mid X=x)=\int y f_{Y \mid X}(y \mid x) d y \text { (cont. case) }
$$

and for a function $h(Y)$,

$$
E(h(Y) \mid X=x)=\int h(y) f_{Y \mid X}(y \mid x) d y
$$

Example D Random Sums: $T=\sum_{i=1}^{N} X_{i}$ where N is a RV with finite expectation and the X_{i} are RVs that are independent of N.

Using Theorem A: $E(Y)=E[E(Y \mid X)]$ then

$$
E(T)=E[E(Y \mid N))
$$

Since $E(T \mid N=n)=n E(X), E(T \mid N)=N E(X)$ and then

$$
E(T)=E[N E(X)]=E(N) E(X)
$$

Example E Random Sums: $T=\sum_{i=1}^{N} X_{i}$ with additional assumption that the X_{i} are independent RVs with the same mean, $E(X)$, and the same variance $V(X)$, and that $\operatorname{Var}(N)<\infty$.

Using Theorem B: $\operatorname{Var}(Y)=\operatorname{Var}[E(Y \mid X)]+E[\operatorname{Var}(Y \mid X)]$, then

$$
\operatorname{Var}(T)=[E(X)]^{2} \operatorname{Var}(N)+E(N) \operatorname{Var}(X)
$$

Properties of Moment Generating Functions

Property C If X has the mgf $M_{X}(t)$ and $Y=a+b X$, then Y has the mgf $M_{Y}(t)=\exp (a t) M_{X}(b t)$.

Proof?

Property D If X and Y are independent mgf's M_{X} and M_{Y} and $Z=X+Y$, then $M_{Z}(t)=M_{X}(t) M_{Y}(t)$ on the common interval where both mgf's exist.
4.4.2 Prediction and Mean Squared Error

1. Predict Y by a constant value c.
$M S E=E\left[(Y-c)^{2}\right]$
Find the value of c that minimizes MSE.
2. Predict Y by some function $h(X)$ minimize $M S E=E\left[(Y-h(X))^{2}\right]$

Example $h(x)=\alpha+\beta x$ linear function minimize $M S E=E\left[(Y-\alpha-\beta X)^{2}\right]$

