Chapter 6 Distributions Derived from the Normal Distribution

$6.2 \chi^{2}, t, F$ Distribution (and gamma, beta)

Normal Distribution

Consider the integral

$$
I=\int_{-\infty}^{\infty} e^{-y^{2} / 2} d y
$$

To evaluate the intgral, note that $I>0$ and

$$
I^{2}=\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \exp \left(-\frac{y^{2}+z^{2}}{2}\right) d y d z
$$

This integral can be easily evaluated by changing to polar coordinates. $y=r \sin (\theta)$ and $z=r \cos (\theta)$. Then

$$
\begin{gathered}
I^{2}=\int_{0}^{2 \pi} \int_{0}^{\infty} e^{-r^{2} / 2} r d r d \theta \\
=\int_{0}^{2 \pi}\left[-\left.e^{-r^{2} / 2}\right|_{0} ^{\infty}\right] d \theta \\
=\int_{0}^{2 \pi} d \theta=2 \pi
\end{gathered}
$$

This implies that $I=\sqrt{2 \pi}$ and

$$
\int_{-\infty}^{\infty} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y=1
$$

If we introduce a new variable of integration

$$
y=\frac{x-a}{b}
$$

where $b>0$, the integral becomes

$$
\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} \exp \left[\frac{-(x-a)^{2}}{2 b^{2}}\right] d x=1
$$

This implies that

$$
f(x)=\frac{1}{b \sqrt{2 \pi}} \exp \left[\frac{-(x-a)^{2}}{2 b^{2}}\right]
$$

for $x \in(-\infty, \infty)$ satisfies the conditions of being a pdf. A random variable of the continuous type with a pdf of this form is said to have a normal distribution.

Let's find the mgf of a normal distribution.

$$
\begin{gathered}
M(t)=\int_{-\infty}^{\infty} e^{t x} \frac{1}{b \sqrt{2 \pi}} \exp \left[\frac{-(x-a)^{2}}{2 b^{2}}\right] d x \\
=\int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} \exp \left(-\frac{-2 b^{2} t x+x^{2}-2 a x+a^{2}}{2 b^{2}}\right) d x \\
=\exp \left[-\frac{a^{2}-\left(a+b^{2} t\right)^{2}}{2 b^{2}}\right] \int_{-\infty}^{\infty} \frac{1}{b \sqrt{2 \pi}} \exp \left[-\frac{\left(x-a-b^{2} t\right)^{2}}{2 b^{2}}\right] d x \\
=\exp \left(a t+\frac{b^{2} t^{2}}{2}\right)
\end{gathered}
$$

Note that the exponential form of the mgf allows for simple derivatives

$$
M^{\prime}(t)=M(t)\left(a+b^{2} t\right)
$$

and

$$
\begin{gathered}
M^{\prime \prime}(t)=M(t)\left(a+b^{2} t\right)^{2}+b^{2} M(t) \\
\mu=M^{\prime}(0)=a \\
\sigma^{2}=M^{\prime \prime}(0)-\mu^{2}=a^{2}+b^{2}-a^{2}=b^{2}
\end{gathered}
$$

Using these facts, we write the pdf of the normal distribution in its usual form

$$
f(x)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right]
$$

for $x \in(-\infty, \infty)$. Also, we write the mgf as

$$
M(t)=\exp \left(\mu t+\frac{\sigma^{2} t^{2}}{2}\right)
$$

Theorem If the random variable X is $N\left(\mu, \sigma^{2}\right), \sigma^{2}>0$, then the random variable $W=(X-\mu) / \sigma$ is $N(0,1)$.
Proof:

$$
\begin{aligned}
& F(w)=P\left[\frac{X-\mu}{\sigma} \leq w\right]=P[X \leq w \sigma+\mu] \\
& \quad=\int_{-\infty}^{w \sigma+\mu} \frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{(x-\mu)^{2}}{2 \sigma^{2}}\right] d x
\end{aligned}
$$

If we change variables letting $y=(x-\mu) / \sigma$ we have

$$
F(w)=\int_{-\infty}^{w} \frac{1}{\sqrt{2 \pi}} e^{-y^{2} / 2} d y
$$

Thus, the pdf $f(w)=F^{\prime}(w)$ is just

$$
f(w)=\frac{1}{\sqrt{2 \pi}} e^{-w^{2} / 2}
$$

for $-\infty<w<\infty$, which shows that W is $N(0,1)$.

Recall, the gamma function is defined by

$$
\Gamma(\alpha)=\int_{0}^{\infty} y^{\alpha-1} e^{-y} d y
$$

for $\alpha>0$.

If $\alpha=1$,

$$
\Gamma(1)=\int_{0}^{\infty} e^{-y} d y=1
$$

If $\alpha>1$, integration by parts can be used to show that

$$
\Gamma(a)=(\alpha-1) \int_{0}^{\infty} y^{\alpha-2} e^{-y} d y=(\alpha-1) \Gamma(\alpha-1)
$$

By iterating this, we see that when α is a positive integer $\Gamma(\alpha)=(\alpha-1)$!.

In the integral defining $\Gamma(\alpha)$ let's have a change of variables $y=x / \beta$ for some $\beta>0$. Then

$$
\Gamma(\alpha)=\int_{0}^{\infty}\left(\frac{x}{\beta}\right)^{\alpha-1} e^{-x / \beta}\left(\frac{1}{\beta}\right) d x
$$

Then, we see that

$$
1=\int_{0}^{\infty} \frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} d x
$$

When $\alpha>0, \beta>0$ we have

$$
f(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}
$$

is a pdf for a continuous random variable with space $(0, \infty)$. A random variable with a pdf of this form is said to have a gamma distribution with parameters α and β.

Recall, we can find the mgf of a gamma distribution.

$$
M(t)=\int_{0}^{\infty} \frac{e^{t x}}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta} d x
$$

Set $y=x(1-\beta t) / \beta$ for $t<1 / \beta$. Then

$$
\begin{gathered}
M(t)=\int_{0}^{\infty} \frac{\beta /(1-\beta t)}{\Gamma(\alpha) \beta^{\alpha}}\left(\frac{\beta y}{1-\beta t}\right)^{\alpha-1} e^{-y} d y \\
=\left(\frac{1}{1-\beta t}\right)^{\alpha} \int_{0}^{\infty} \frac{1}{\Gamma(\alpha)} y^{\alpha-1} e^{-y} d y \\
=\frac{1}{(1-\beta t)^{\alpha}}
\end{gathered}
$$

for $t<\frac{1}{\beta}$.

$$
\begin{gathered}
M^{\prime}(t)=\alpha \beta(1-\beta t)^{-\alpha-1} \\
M^{\prime \prime}(t)=\alpha(\alpha+1) \beta^{2}(1-\beta t)^{-\alpha-2}
\end{gathered}
$$

So, we can find the mean and variance by

$$
\mu=M^{\prime}(0)=\alpha \beta
$$

and

$$
\sigma^{2}=M^{\prime \prime}(0)-\mu^{2}=\alpha \beta^{2}
$$

An important special case is when $\alpha=r / 2$ where r is a positive integer, and $\beta=2$. A random variable X with pdf

$$
f(x)=\frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{r / 2-1} e^{-x / 2}
$$

for $x>0$ is said to have a chi-square distribution with r degrees of freedom. The mgf for this distribution is

$$
M(t)=(1-2 t)^{-r / 2}
$$

for $t<1 / 2$.

Example: Let X have the pdf

$$
f(x)=1
$$

for $0<x<1$. Let $Y=-2 \ln (X)$. Then $x=g^{-1}(y)=e^{-y / 2}$.
The space \mathcal{A} is $\{x: 0<x<1\}$, which the one-to-one transformation $y=-2 \ln (x)$ maps onto \mathcal{B}.
$\mathcal{B}=\{y: 0<y<\infty\}$.
The Jacobian of the transformation is

$$
J=-\frac{1}{2} e^{-y / 2}
$$

Accordingly, the pdf of Y is

$$
f(y)=f\left(e^{-y / 2}\right)|J|=\frac{1}{2} e^{-y / 2}
$$

for $0<y<\infty$.

Recall the pdf of a chi-square distribution with r degress of freedom.

$$
f(x)=\frac{1}{\Gamma(r / 2) 2^{r / 2}} x^{r / 2-1} e^{-x / 2}
$$

From this we see that $f(x)=f(y)$ when $r=2$.

Definition (Book) If Z is a standard normal random variable, the distribution of $U=Z^{2}$ is called a chi-square distribution with 1 degree of freedom.

Theorem If the random variable X is $N\left(\mu, \sigma^{2}\right)$, then the random variable $V=$ $(X-\mu)^{2} / \sigma^{2}$ is $\chi^{2}(1)$.

Beta Distribution

Let X_{1} and X_{2} be independent gamma variables with joint pdf

$$
h\left(x_{1}, x_{2}\right)=\frac{1}{\Gamma(\alpha) \Gamma(\beta)} x_{1}^{\alpha-1} x_{2}^{\beta-1} e^{-x_{1}-x_{2}}
$$

for $0<x_{1}<\infty$ and $0<x_{2}<\infty$, where $\alpha>0, \beta>0$.
Let $Y_{1}=X_{1}+X_{2}$ and $Y_{2}=\frac{X_{1}}{X_{1}+X_{2}}$.

$$
\begin{gathered}
y_{1}=g_{1}\left(x_{1}, x_{2}\right)=x_{1}+x_{2} \\
y_{2}=g_{2}\left(x_{1}, x_{2}\right)=\frac{x_{1}}{x_{1}+x_{2}} \\
x_{1}=h_{1}\left(y_{1}, y_{2}\right)=y_{1} y_{2} \\
x_{2}=h_{2}\left(y_{1}, y_{2}\right)=y_{1}\left(1-y_{2}\right)
\end{gathered}
$$

$$
J=\left|\begin{array}{cc}
y_{2} & y_{1} \\
\left(1-y_{2}\right) & -y_{1}
\end{array}\right|=-y_{1}
$$

The transformation is one-to-one and maps \mathcal{A}, the first quadrant of the $x_{1} x_{2}$ plane onto
$\mathcal{B}=\left\{\left(y_{1}, y_{2}\right): 0<y_{1}<\infty, 0<y_{2}<1\right\}$.
The joint pdf of Y_{1}, Y_{2} is

$$
\begin{aligned}
f\left(y_{1}, y_{2}\right) & =\frac{y_{1}}{\Gamma(\alpha) \Gamma(\beta)}\left(y_{1} y_{2}\right)^{\alpha-1}\left[y_{1}\left(1-y_{2}\right)\right]^{\beta-1} e^{-y_{1}} \\
& =\frac{y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} y_{1}^{\alpha+\beta-1} e^{-y_{1}}
\end{aligned}
$$

for $\left(y_{1}, y_{2}\right) \in \mathcal{B}$.
Because \mathcal{B} is a rectangular region and because $g\left(y_{1}, y_{2}\right)$ can be factored into a function of y_{1} and a function of y_{2}, it follows that Y_{1} and Y_{2} are statistically independent.

The marginal pdf of Y_{2} is

$$
\begin{aligned}
f_{Y_{2}}\left(y_{2}\right) & =\frac{y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{\infty} y_{1}^{\alpha+\beta-1} e^{-y_{1}} d y_{1} \\
& =\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} y_{2}^{\alpha-1}\left(1-y_{2}\right)^{\beta-1}
\end{aligned}
$$

for $0<y_{2}<1$.
This is the pdf of a beta distribution with parameters α and β.
Also, since $f\left(y_{1}, y_{2}\right)=f_{Y_{1}}\left(y_{1}\right) f_{Y_{2}}\left(y_{2}\right)$ we see that

$$
f_{Y_{1}}\left(y_{1}\right)=\frac{1}{\Gamma(\alpha+\beta)} y_{1}^{\alpha+\beta-1} e^{-y_{1}}
$$

for $0<y_{1}<\infty$.
Thus, we see that Y_{1} has a gamma distribution with parameter values $\alpha+\beta$ and 1 .

To find the mean and variance of the beta distribution, it is helpful to notice that from the pdf, it is clear that for all $\alpha>0$ and $\beta>0$,

$$
\int_{0}^{1} y^{\alpha-1}(1-y)^{\beta-1} d y=\frac{\Gamma(\alpha) \Gamma(\beta)}{\Gamma(\alpha+\beta)}
$$

The expected value of a random variable with a beta distribution is

$$
\begin{gathered}
\int_{0}^{1} y g(y) d y=\frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \int_{0}^{1} y^{\alpha}(1-y)^{\beta-1} d y \\
=\frac{\Gamma(\alpha+1) \Gamma(\beta)}{\Gamma(\alpha+1+\beta)} \times \frac{\Gamma(\alpha+\beta)}{\Gamma(\alpha) \Gamma(\beta)} \\
=\frac{\alpha}{\alpha+\beta}
\end{gathered}
$$

This follows from applying the fact that

$$
\Gamma(\alpha+1)=\alpha \Gamma(\alpha)
$$

To find the variance, we apply the same idea to find $E\left[Y^{2}\right]$ and use the fact that $\operatorname{var}(Y)=E\left[Y^{2}\right]-\mu^{2}$.

$$
\sigma^{2}=\frac{\alpha \beta}{(\alpha+\beta+1)(\alpha+\beta)^{2}}
$$

t distribution

Let W and V be independent random variables for which W is $N(0,1)$ and V is $\chi^{2}(r)$.

$$
f(w, v)=\frac{1}{\sqrt{2 \pi}} e^{-w^{2} / 2} \frac{1}{\Gamma(r / 2) 2^{r / 2}} v^{r / 2-1} e^{-r / 2}
$$

for $-\infty<w<\infty, 0<v<\infty$.
Define a new random variable T by

$$
T=\frac{W}{\sqrt{V / r}}
$$

To find the pdf $f_{T}(t)$ we use the change of variables technique with transformations

$$
t=\frac{w}{\sqrt{v / r}} \text { and } u=v \text {. }
$$

These define a one-to-one transformation that maps
$\mathcal{A}=\{(w, v):-\infty<w<\infty, 0<v<\infty\}$ to
$\mathcal{B}=\{(t, u):-\infty<t<\infty, 0<u<\infty\}$.
The inverse transformations are

$$
w=\frac{t \sqrt{u}}{\sqrt{r}} \text { and } v=u \text {. }
$$

Thus, it is easy to see that

$$
|J|=\sqrt{u} / \sqrt{r}
$$

By applying the change of variable technique, we see that the joint pdf of T and U is

$$
\begin{gathered}
f_{T U}(t, u)=f_{W V}\left(\frac{t \sqrt{u}}{\sqrt{r}}, u\right)|J| \\
=\frac{u^{r / 2-1}}{\sqrt{2 \pi} \Gamma(r / 2) 2^{r / 2}} \exp \left[-\frac{u}{2}\left(1+t^{2} / r\right)\right] \frac{\sqrt{u}}{\sqrt{r}}
\end{gathered}
$$

for $-\infty<t<\infty, 0<u<\infty$.

To find the marginal pdf of T we compute

$$
\begin{gathered}
f_{T}(t)=\int_{0}^{\infty} f(t, u) d u \\
=\int_{0}^{\infty} \frac{u^{(r+1) / 2-1}}{\sqrt{2 \pi r} \Gamma(r / 2) 2^{r / 2}} \exp \left[-\frac{u}{2}\left(1+t^{2} / r\right)\right] d u
\end{gathered}
$$

This simplifies with a change of variables $z=u\left[1+\left(t^{2} / r\right)\right] / 2$.

$$
\begin{gathered}
f_{T}(t)=\int_{0}^{\infty} \frac{1}{\sqrt{2 \pi r}} \Gamma(r / 2) 2^{r / 2} \\
\left.=\frac{2 z}{1+t^{2} / r}\right)^{(r+1) / 2-1} e^{-z}\left(\frac{2}{1+t^{2} / r}\right) d z \\
=\frac{\Gamma[(r+1) / 2]}{\sqrt{\pi r} \Gamma(r / 2)\left(1+t^{2} / 2\right)^{(r+1) / 2}}
\end{gathered}
$$

for $-\infty<t<\infty$.

A random variable with this pdf is said to have a \mathbf{t} distribution with r degrees of freedom.

F Distribution

Let U and V be independent chi-square random variables with r_{1} and r_{2} degrees of freedom, respectively.

$$
f(u, v)=\frac{u^{r_{1} / 2-1} v^{r_{2} / 2-1} e^{-(u+v) / 2}}{\Gamma\left(r_{1} / 2\right) \Gamma\left(r_{2} / 2\right) 2^{\left(r_{1}+r_{2}\right) / 2}}
$$

Define a new random variable

$$
W=\frac{U / r_{1}}{V / r_{2}}
$$

To find $f_{W}(w)$ we consider the transformation

$$
w=\frac{u / r_{1}}{v / r_{2}} \text { and } z=v .
$$

This maps

$$
\begin{aligned}
& \mathcal{A}=\{(u, v): 0<u<\infty, 0<v<\infty\} \text { to } \\
& \mathcal{B}=\{(w, z): 0<w<\infty, 0<z<\infty\} .
\end{aligned}
$$

The inverse transformations are

$$
u=\left(r_{1} / r_{2}\right) z w \text { and } v=z .
$$

This results in

$$
|J|=\left(r_{1} / r_{2}\right) z
$$

The joint pdf of W and Z by the change of variables technique is

$$
f(w, z)=\frac{\left(\frac{r_{1} z w}{r_{2}}\right)^{r_{1} / 2-1} z^{r_{2} / 2-1}}{\Gamma\left(r_{1} / 2\right) \Gamma\left(r_{2} / 2\right) 2^{\left(r_{1}+r_{2}\right) / 2}} \exp \left[-\frac{z}{2}\left(\frac{r_{1} w}{r_{2}}+1\right)\right] \frac{r_{1} z}{r_{2}}
$$

for $(w, z) \in \mathcal{B}$.
The marginal pdf of W is

$$
f_{W}(w)=\int_{0}^{\infty} f(w, z) d z
$$

$$
=\int_{0}^{\infty} \frac{\left(r_{1} / r_{2}\right)^{r_{1} / 2}(w)^{r_{1} / 2-1} z^{r_{1}+r_{2} / 2-1}}{\Gamma\left(r_{1} / 2\right) \Gamma\left(r_{2} / 2\right) 2^{\left(r_{1}+r_{2}\right) / 2}} \exp \left[-\frac{z}{2}\left(\frac{r_{1} w}{r_{2}}+1\right)\right] d z
$$

We simplify this by changing the variable of integration to

$$
y=\frac{z}{2}\left(\frac{r_{1} w}{r_{2}}+1\right)
$$

Then the pdf $f_{W}(w)$ is

$$
\begin{gathered}
\int_{0}^{\infty} \frac{\left(r_{1} / r_{2}\right)^{r_{1} / 2}(w)^{r_{1} / 2-1}}{\Gamma\left(r_{1} / 2\right) \Gamma\left(r_{2} / 2\right) 2^{\left(r_{1}+r_{2}\right) / 2}}\left(\frac{2 y}{r_{1} w / r_{2}+1}\right)^{\left(r_{1}+r_{2}\right) / 2-1} e^{-y}\left(\frac{2}{r_{1} w / r_{2}+1}\right) d y \\
=\frac{\Gamma\left[\left(r_{1}+r_{2}\right) / 2\right]\left(r_{1} / r_{2}\right)^{r_{1} / 2}(w)^{r_{1} / 2-1}}{\Gamma\left(r_{1} / 2\right) \Gamma\left(r_{2} / 2\right)\left(1+r_{1} w / r_{2}\right)^{\left(r_{1}+r_{2}\right) / 2}}
\end{gathered}
$$

for $0<w<\infty$.
A random variable with a pdf of this form is said to have an \mathbf{F}-distribution with numerator degrees of freedom r_{1} and denominator degrees of freedom r_{2}.

