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I. INTRODUCTORY CONCEPTS

A. Spatial Datasets

(a) Wet deposition of SO4 (g/m2) in 1987 at National Acid Deposition Program sites.
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(b) Coal ash samples from a mine in Pennsylvania.
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(c) Presence (black) or absence (white) of Atriplex hymenelytra on a grid of quadrats in
Death Valley, CA.
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(d) Population-adjusted mortality rates due to SIDS in counties of North Carolina, 1974-
1978.
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(e) Locations of Japanese pines, redwood saplings, biological cells, and scouring rushes in
various study areas.
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B. What is Spatial Statistics?

• Basic ingredients:

– Observations on one or more “response” variables are taken at multiple, identifi-
able sites in some spatial domain.

– Locations of these sites are observed and are attached, as labels, to the observa-
tions.

– An analysis of the observations is performed, in which the spatial locations of
sites are taken into account.

– Either the observations or the spatial locations (or both) are modelled as random
variables, and inferences are made about these models and/or about additional
unobserved variables.

• Thus, spatial statistics would include any investigation in which the data’s spatial
locations play a role in a probabilistic or statistical analysis (we will emphasize the
statistical).

• Spatial statistics is a vast subject, in large part because spatial data are of so many
different types. The response variable may be:

– univariate or multivariate

– categorical or continuous

– real-valued (numerical) or not real-valued (e.g. set-valued)

– observational or experimental

The data locations may:

– be points, regions, line segments, or curves

– be regularly or irregularly spaced

– be regularly or irregularly shaped

– belong to a Euclidean or non-Euclidean space

The mechanism that generates the data locations may be:

– known or unknown

– random or non-random

– related or unrelated to the processes that govern the responses
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• Related subjects:

– Time series analysis

– Reliability/survival analysis

– Longitudinal data analysis

C. Three Important Types of Spatial Data

1. Geostatistical data

• The response variable exists at every point in the study region; however, we
observe the response at only a finite number of points or subregions.

• Examples:

(a) Annual acid rain deposition in U.S.

(b) Richness of iron ore within an ore body

2. Lattice data

• The response variable exists and is observed only on a finite set of points or
subregions within the study region.

• Examples:

(a) Presence or absence of a plant species in square quadrats over a study area

(b) Numbers of deaths due to SIDS in the counties of North Carolina

(c) Pixel values from remote sensing (satellites)

3. Spatial point patterns

• Data are the spatial locations of point “events” within the study region. No
response variable is observed at the locations.

• Examples:

(a) Locations of Equisetum arvense plants at a marsh edge — evidence of envi-
ronmental gradient?

(b) Location of lunar craters — meteor impacts or volcanism?

(c) Locations of residences of individuals with lung cancer within 50 miles of a
large incinerator — does disease risk increase with proximity to the inciner-
ator?

• A more general kind of spatial point pattern is a marked spatial point pattern, in
which a nontrivial response variable (called the mark) is observed at each point.
If the mark is discrete, we have a multivariate spatial point pattern.
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The distinctions between these three types are not always clearcut. In particular, lattice data
and geostatistical data have many similarities. In a sense, lattice data are not as refined as
geostatistical data or spatial point patterns since you can obtain lattice data by various
reductions of the other two.

In addition to indicating some prototypes of spatial data, the examples listed above indicate
the breadth of disciplines in which scientific inquiry is concerned with spatial data.
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D. Basic Notation and Statistical Model

1. Notation

• Space S, which we will usually assume to be Euclidean, i.e. S = Rd where d = 1,
2, or 3. We will emphasize the case d = 2 but not to the complete exclusion of
the other cases.

• Arbitrary point in S, s ∈ S.

• Study region, A ⊂ S.

• Spatial locations S1, . . . , Sn, Si ∈ D ⊂ A

– observed

– usually (but not necessarily) distinct, i.e. there is usually no replication at
sites (at a single time)

The only kinds of locations that we consider are points and regions.

• Responses Z(S1), . . . ,Z(Sn). In general these are multivariate, but we will em-
phasize the univariate case.

• Covariates X(S1), . . . ,X(Sn).

2. Model: {Z(S),X(S): S ∈ D}.

• This is a stochastic process, i.e. a collection of random variables, indexed by points
or regions in D.

• Either the Z-values or S-values or both are random. The X-values are assumed
to be nonrandom; or if they are random, all inference is regarded as conditional
on the observed values.
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E. Spatial Statistics — Why Bother?

(a) Characterizing the spatial structure of the data may be of direct interest. More on this
will follow.

(b) The spatial structure may not be of direct interest, but modelling or otherwise accounting
for it may improve other inferences.

Examples:

• (Geostatistics.) Prediction of an unobserved response, Z(s0), where s0 is a specified
point site.

•

If all of the observed responses are uncorrelated with each other and with Z(s0), then
Z̄ (the average of the observed responses) is the best linear unbiased predictor.

If, however, the responses are spatially correlated, then Z̄ is inefficient.
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• (Spatial point patterns.) Estimation of the number, N , of trees in a forest of area |A|.

One method for estimating N is based on measuring the distance, Xi, to the nearest
tree from each of m fixed points.
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If tree locations are completely spatially random (a random sample from the uniform
distribution on A), then the MLE of N is

N̂ =
m|A|

∑m
i=1 πX

2
i

.

If not, then N̂ can be badly biased.

12



• (Lattice data analysis.) Variance of the sample mean.

Z(1,1)

Z(4,1)

Z(1,4)

Z(4,4)

Consider 16 responses taken over sites forming a 4 × 4 square grid. Suppose the
observations Z(i, j) have common mean µ and common variance 1, and

corr[Z(i, j), Z(k, l)] = 0.5|i−k|+|j−l|.

Suppose we wish to estimate µ by the sample mean, Z̄.

It’s tedious but mathematically easy to show that var(Z̄)
.
= 0.266.

If there were no spatial correlation, then var(Z̄) = 1/16 = 0.0625.
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• (Lattice data analysis.) Spatial experimental design.

Consider a field-plot experiment with 50 units, laid out in 10 linear blocks of 5 plots
each. Suppose there are 5 treatments and each is to occur once in each block. Consider
two designs:

1. Randomized block design

2. First-order nearest-neighbor balanced design

5 4 1 3 2
2 5 4 1 3
3 2 5 4 1
1 3 2 5 4
4 1 3 2 5
5 1 2 4 3
3 5 1 2 4
4 3 5 1 2
2 4 3 5 1
1 2 4 3 5

If treatment-adjusted responses are independent across blocks but positively spatially
correlated within blocks, then the second design is optimal (and considerably superior
to the RBD) in the sense of minimizing the average variance of treatment contrasts.
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F. Spatial Structure

The observations are suspected of having a coherent spatial structure, the characterization
of which may be important. The kinds of spatial structure that may occur vary across types,
but there are some commonalities. It has been observed over and over again in practice that
observations taken at sites close together tend to be more alike than observations taken at
sites far apart. In the spatial context, this is sometimes called the “First Law of Spatial
Statistics.”

• Large-scale structure (Global)

– Mean function of geostatistical process

– Intensity of spatial point process

– Mean vector of lattice data

• Small-scale structure (Local)

– Variogram, covariance function of geostatistical process (and lattice process)

– Ripley’s K-function, second-order intensity, nearest-neighbor functions for spatial
point process

– Neighbor weights for lattice process

Two important types of spatial structure are stationarity and isotropy. Formal definitions
of these will be given later. For now, the following descriptions will suffice.

1. Stationarity — the property whereby the behavior of the process is similar across all
of A. This implies:

• constant large-scale structure

• small-scale structure which depends on the spatial locations only through their
relative positions

2. Isotropy — the property whereby the process is stationary, plus the small-scale struc-
ture depends on the spatial locations only through the Euclidean distance between
them.
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G. Main Objectives of Spatial Statistics

1. Inference for spatial structure. Examples:

• Testing for existence of spatial structure

• Estimating spatial structural parameters

• Choosing between alternative models

2. Inference for non-spatial structure. Examples:

• Estimating treatment effects in spatial experiments

• Effects of covariates on intensity of a spatial point process

• Estimation of the number of plants living in a region

3. Prediction of unobserved variables (almost exclusively geostatistical, where it is known
as kriging)

4. Design issues, such as where to take observations or how to arrange treatments in a
spatial experiment.

16



H. Temporal Statistics, Spatial Statistics, and Spatio-Temporal Statistics

1. Temporal Statistics vs. Spatial Statistics

• Inherent difference: Time flows in one direction only, from past to present to future.
Not so in space.

• Contrast between time series analysis and geostatistics/lattice data analysis:

1. In time series, observations usually are regularly spaced. In geostatistics partic-
ularly, but also in lattice data analysis, irregularly spaced data are at least as
common as regularly spaced data. So geostatistical and lattice models must be
more flexible.

2. In classical time series models, observations usually are assumed to be dependent
but identically distributed (stationarity). In geostatistics and lattice data analysis,
observations are usually assumed to be dependent and non-identically distributed;
in particular, models usually include a trend.

3. Due to the unidirectional flow of time, time series models incorporate interaction
that results from regarding each observation as dependent on quantities that
occurred in the “past” or “present” only. In space, interaction generally occurs
in all directions, so most geostatistical/lattice models incorporate omnidirectional
interaction.

4. In time series, prediction usually consists of extrapolating to a future time point.
In geostatistics, because we can “go back” in space, interpolation is as important
as extrapolation (usually more so).

• Geostatistics and lattice data analysis are most similar to that subfield of modern
longitudinal data analysis which explictly models the temporal correlation among the
observations.

– This similarity is exemplified (and exploited) by SAS PROC MIXED.

– Key difference: independent replications generally exist in the longitudinal case
but not in the spatial case.

• Spatial point pattern analysis is most similar to failure time data analysis. Some ways
that spatial point patterns (SPPs) can be contrasted with failure time data analysis
are as follows:

1. A SPP is usually a window of a process which actually occurs over a larger region.
(An FTD may be observed until the process “ends.”)

2. SPP analysis has edge and possibly overlap effects. (Not so for FTD.)

3. Sometimes we don’t observe the whole SPP (sparsely sampled patterns). (FTD
are typically not sparsely sampled.)

4. SPP models feature neighbor interactions prominently. (Not so prominently for
FTD.)
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2. Spatiotemporal Statistics

• Spatiotemporal data are observations with identifiable and observed spatial and tem-
poral labels. Spatiotemporal statistics accounts for these labels in a statistical analysis.

• Types of spatio-temporal data are myriad. The many possibilities result from combin-
ing spatial data types with temporal data types and from interactions between spatial
and temporal factors governing the data.

• Examples of space-time data:

– earthquakes (locations random in time and space)

– change in locations of trees over time (locations random in space but possibly
nonrandom in time)

– environmental monitoring of water quality (locations nonrandom in time and
space).

• Possible questions of interest:

– How are earthquakes clustered in space and time?

– Do locations of trees at a given time influence the locations of trees at a later
time? Is the spatial pattern similar over time?

– Does a spatial trend in water quality change over time?

• Can model space-time data as:

– a collection of spatially correlated time series, or

– a collection of temporally correlated spatial random fields, lattice processes, or
spatial point processes

• We’ll focus mostly on “pure” spatial (and pure temporal) statistics, but later we will
discuss spatiotemporal extensions of certain issues, topics, or methods.
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II. EXPLORATORY DATA ANALYSIS FOR TIME SE-
RIES, GEOSTATISTICAL, AND LATTICE DATA

1. Non-spatial (and Non-temporal) Summaries

(a) Numerical summaries: Mean, median, standard deviation, range, etc.

• Reduce the attribute data to a few numbers, but are not that useful here because
they ignore the temporal/locational information. (Remember: such data should not
be regarded as having come from a single population, as in classical statistics.)

• One relevant R function is summary(); for example,
summary(so4dep)

produces the following output:
Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0190 0.3320 1.0440 1.2178 1.9250 4.4020

(b) Stem-and-leaf display

• Gives a more complete picture of the attribute data than a numerical summary such
as the mean, but it has the same defect: because the temporal/locational information
is ignored, it gives no indication of the data’s temporal/spatial structure. Moreover, it
does NOT, as in classical statistics, represent an estimate of a probability distribution
from which any particular datum was drawn (unless the observations happen to be
iid).

• The relevant R function is stem(); for example
stem(so4dep)

produces the following output:

0 | 2446678999901234455667999

2 | 12222223344555778899011333467778

4 | 01556889991122377799

6 | 112459369

8 | 177814677

10 | 2444890257789

12 | 099924577

14 | 23468847

16 | 11244888889

18 | 0033457901233458

20 | 2260012358889

22 | 13569

24 | 4689112

26 | 34689

28 | 1149113

30 | 46

32 | 2935

34 |

36 | 5

38 |

40 |

42 |

44 | 0
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2. Maps of Data Locations and Neighbors

Having explored the attributes “in isolation” on the previous page, we can also explore the
data locations stripped of their attribute values.

(a) Scaled map of data locations

• For the sulfate deposition data, we can create two maps by the following S+SpatialStats
code:

scaled.plot(so4x,so4y)

usa()

points(so4x,so4y)
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(b) Neighbor identification map

• Each data location is represented by a point, and every neighbor of that location is
connected to the point by a line segment.

• For the SIDS data, we can create the plot below using the following S+SpatialStats
code:

attach(sids)

scaled.plot(easting,northing)

segments(easting[sids.neighbor$row.id],northing[sids.neighbor$row.id],

easting[sids.neighbor$col.id],northing[sids.neighbor$col.id])

detach(sids)
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3. Methods used mainly to explore large-scale temporal and spatial variation

(a) Time series plot (for temporal data)

• Simply a plot of attribute versus time, connected in sequence by line segments

• First example below: X(t)’s are 100 iid N(0,1) random variables

• Second example below: Z(t) = 0.01 ∗ t+X∗(t) where X∗(t)’s are 100 iid N(0,1)’s
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(b) 3-D Scatter plot (assuming spatial data with d = 2)

• A plot of Zi (raw or smoothed values) versus location.

• Gives an impression of the attribute values over space, but interesting features of the
data are often obscured.

• It is NOT a depiction of the attribute variable’s probability distribution.

• Example (raw values) for the sulfate deposition data — See the first page of these
notes.

• Another example (interpolated values) for the sulfate deposition data — using the R
function persp() — will be seen in the in-class activity.

(c) Plots of Zi versus each marginal coordinate.

(d) Plot of row or column mean or median of Zi versus row or column index (assuming that
data locations lie on a regular grid or have been assigned to such).

(e) 2-D scatterplot of data locations with symbols indicating whether Zi is above or below
the median of the Zi’s.
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(f) Contour plot of smoothed Zi’s
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(g) Gray-scale plot of Zi’s
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4. Methods used mainly to explore small-scale dependence

(a) Same-lag scatterplots (“h-scatterplots”)

• For a fixed vector e of unit length and a fixed scalar h, plot Z(si + he) versus Z(si)
for all suitable i.

• Requires regular spacing between data locations.

• Positive (negative) correlation in plot indicates positive (negative) spatial dependence
at that lag.

• Individually, these plots may reveal outliers.

• Comparisons among the plots may reveal the existence of nonstationarity in the mean
and/or variance or the existence of anisotropy.
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•

•

•

•

•

•

•

•
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(b) Sample autocovariance function (acf)

• Measures similarity of attributes at sites (or times) a given “lag” apart

• Plot of Ĉ(hu) versus hu, where

Ĉ(hu) =
1

N(hu)

∑

si−sj=hu

(Z(si) − Z̄)(Z(sj) − Z̄) (u = 1, . . . , k).

Here h1, . . . ,hk are the distinct values of h represented in the data set, and N(hu) is
the number of times that lag hu occurs in the data set.

• For time series data, it is more simply a plot of Ĉ(h) versus h, where

Ĉ(h) =
1

N − h

N−h∑

i=1

(Z(i) − Z̄)(Z(i+ h) − Z̄).

Below is the acf for the 100 iid N(0,1) random variables in first example on page 22:
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(c) Variogram cloud (and square-root-differences cloud)

• Historically has been used for spatial data much more than temporal data.

• Plot (Z(si)−Z(sj))
2 versus [(si − sj)

′(si − sj)]
1/2 for all possible pairs of observations.

(For the square-root-differences cloud, use |Z(si) − Z(sj)|1/2 as the ordinate instead).
For example, for the sulfate deposition data,
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m
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m
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• The plot is often an unintelligible mess, hence it may often be advisable to bin the lags
and plot a boxplot for each bin.

• A tendency for the cloud to “increase” as distance increases is indicative of positive
spatial association.

• Note that isotropy is implicitly assumed.

• The square-root-differences are more resistant to outliers.
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(d) Sample semivariogram (or variogram)

• Plot one-half the average squared difference (or, for the variogram, merely the average
squared difference) of observations lagged the same distance and direction apart, versus
the lag.

• We assume here that the data are regularly spaced; the more general case of irregularly
spaced data will be considered later.

• Formally, we plot γ̂(hu) versus hu, where

γ̂(hu) =
1

2N(hu)

∑

si−sj=hu

{Z(si) − Z(sj)}2

(u = 1, . . . , k),

h1, . . . ,hk are the distinct values of h represented in the data set, and N(hu) is the
number of times that lag hu occurs in the data set.

• The variogram is a measure of dissimilarity.

• Stationarity of some kind is implicity assumed.

• Toy example:

• If d = 2, you can display as a 3-D plot or you can superimpose it for a few selected
directions (e.g. N-S, NE-SW, E-W, and SE-NW) on the same 2-D plot.

• If isotropy is assumed, you can plot in 2-D for both cases d = 2 and d = 3.

• Will discuss in much more detail later.

(e) 3-D plot of correlation range versus spatial location, computed from a moving window.
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5. Methods used mainly to explore small-scale variability

(a) 3-D plot of standard deviation versus spatial location, computed from a moving window

• May reveal nonstationarity in variability, and indicate which portion(s) of A is (are)
more variable than the rest

(b) Scatterplot of standard deviation versus mean, computed from a moving window

• May also reveal nonstationarity in variability, but differently from the previous method.

(c) For areal lattice data: Scatterplot of attribute versus area (or population) of subregion

6. Methods used mainly for detecting outliers

Data often include outliers, i.e., attribute observations that look suspiciously atypical. In
the case of geostatistical data, outliers may be of two types:

1. Distributional outliers — observations that seem unusual with respect to the data’s
overall distribution

2. Spatial outliers — observations that may not be unusual with respect to the data’s
overall distribution, but are unusual with respect to their neighbors
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Methods that graph and summarize the data should ideally be relatively unaffected by
outliers and should be able to highlight them. Such methods are called resistant.

Outlier Detection Methods:

• Stem-and-leaf display — can identify distributional outliers, but not necessarily spatial
outliers

• Plots of sample means and medians versus row index or column index (assumes that
the data lie on a rectangular grid or can be assigned to such).

• Compute, for each row and column,

n1/2|Z̄ − med(Zi)|/[σ(0.5708)1/2]

where Z̄ is the sample mean and med(Zi) is the sample median within that row or
column and σ = IQR/1.349. Assess as a standard normal deviate. Values of 3 or larger
are of concern.

• Median polish — large residuals correspond to outliers.

• Plot of each datum versus its nearest neighbor (or versus the average of its m nearest
neighbors, or versus the average of all observations within a fixed distance δ of it).

A hypothetical example:
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III. GENERAL MODEL

Popular statistical model for many kinds of data:

Datum = mean + residual

where the mean is a nonrandom quantity (a number) that may vary from datum to datum
and the residual is a random variable with mean zero.

• For a random sample from a single distribution (the classical statistics paradigm), the
mean would be the same for each datum, the residuals would all have the same variance
and the residuals would be independent.

• For the classical regression situation, the mean is taken to be a linear function of
unknown parameters and the residuals are taken to be iid, with mean zero.

Neither the random sampling nor classical regression assumptions are generally appropriate
in the contexts we consider in this course; nevertheless, the basic model is still useful and
takes the form

Z(s) = m(s) + ǫ(s).

Here:

• s generally represents a point in space, but it could also represent a point in time.

• m(s) ≡ E[Z(s)] is the mean function.

• {ǫ(s): s ∈ D} is a zero-mean stochastic process, also called a random field.

Further remarks:

• For a time series, this model defines a random time series plot. IfD is a two-dimensional
region, this model defines a random surface over D.

• This model decomposes the total variation into large-scale variation (the mean func-
tion) and small-scale variation (the residual process).

Note: The observed data represent a sparse sample from a single realization of {Z(s): s ∈ D}.
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1. Models for the Mean Function

The principle of spatial (or temporal) continuity suggests that sites close to one another in
space (or time) should have similar means, but sites far apart need not. This leads to the
postulation of a continuous, relatively smooth (but otherwise unconstrained) model for the
mean function.

A very useful class of mean functions are the polynomials. For example, in two dimen-
sions, with a site’s coordinates denoted as s = (x, y), the full first-order and second-order
polynomials are as follows:

m(x, y) = β0 + β1x+ β2y

m(x, y) = β0 + β1x+ β2y + β11x
2 + β12xy + β22y

2

The polynomials are a class of linear mean functions, i.e. functions of the form

m(s) =
p∑

j=1

βjfj(s)

where f1(s), . . . , fp(s) are known functions.

To emphasize the dependence of a mean function on an unknown vector of parameters β,
we may write it as m(s; β).

Other possibilities for mean functions:

• Nonlinear functions (smooth)

• Trigonometric functions (smooth and periodic)

• Median polish surface (continuous but less smooth)

• Nonparametric smooth functions (splines, LOESS)
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2. Small-Scale Variation

To make statistical progress we must at least partially specify the behavior of {ǫ(s): s ∈ D}.
Since its first-order properties have been fully specified (zero mean), we focus on second-
order properties.

Assume that {ǫ(s): s ∈ D} has associated with it a covariance function, which expresses the
covariance between two values of ǫ(·) as a function of the coordinates of the two corresponding
sites. That is,

C(s, t) ≡ cov{ǫ(s), ǫ(t)} = cov{Z(s), Z(t)}.

This function satisfies the following two properties:

1. Symmetry, i.e., C(s, t) = C(t, s) for all s, t ∈ D.

2. Nonnegative definiteness, i.e.,

n∑

i=1

n∑

j=1

aiajC(si, sj) ≥ 0

for all n, all sequences {ai: i = 1, . . . , n}, and all sequences of spatial locations
{si: i = 1, . . . , n}.

If the covariance function is well-defined, then we can also define the correlation function

ρ(s, t) = corr{Z(s), Z(t)} =
C(s, t)

[C(s, s)C(t, t)]1/2
.

Note: If m(s) and C(s, t) were completely known, the distribution of {Z(s): s ∈ D} still
would not be completely specified. If, however, we also assume that {ǫ(s): s ∈ D} is a
Gaussian process, then the distributions of {ǫ(s): s ∈ D} and {Z(s): s ∈ D} are completely
determined.
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3. Stationarity

To simplify the consideration of models for the covariance function and to make statistical
inference more feasible, it is helpful to assume stationarity, which asserts that even a single
realization of {ǫ(s): s ∈ D} has a kind of replication built into it.

Two types of stationarity (for now):

1. Strict stationarity — requires that the joint probability distribution of {ǫ(s): s ∈ D}
depends only on the relative positions of sites, i.e.,

Fs1+h,...,sm+h(e1, . . . , em) = Fs1,...,sm
(e1, . . . , em)

for all m; s1, . . . , sm; h; and all e1, . . . , em. This implies, for example, that P [ǫ(s1+h) ≤
e1] = P [ǫ(s1) ≤ e1] for all s1, h, and e1.

2. Second-order stationarity — requires that:

• the mean is constant (which has already been assumed);

• the way that two values of ǫ(·) co-vary is consistent for values at sites having
the same relative positions. That is, the covariance between variates at two sites
depends on only the sites’ relative positions. This can be expressed in either of
the following two ways:

(a) C(s, t) = C(s + h, t + h) for “all” h.

(b) C(s, t) = C(h), where h = s − t, for all s, t ∈ D.

In practice, an assumption of second-order stationarity is often sufficient for inference pur-
poses, and so it will be one of our basic assumptions.
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IV. MODELS FOR TIME SERIES DATA

We now consider models for data observed at equally spaced time points t = 1, 2, . . . , n.
Assume initially that the mean is zero at all times, i.e. m(t) ≡ 0.

Important models (for the covariance structure):

1. Moving average model of order 1, MA(1)

Z(t) = at − θ1at−1,

where the at’s are iid N(0, σ2
a) and θ1 is an unconstrained parameter.

Observe that

var(Z(t)) =

cov(Z(t), Z(t+ 1)) =

cov(Z(t), Z(t+ h)) =

Thus,
ρ(h) =

2. Extension of MA(1) to MA(q)

Z(t) = at − θ1at−1 − θ2at−2 − · · · − θqat−q

where the at’s are iid N(0, σ2
a) and θ1, . . . , θq are unconstrained parameters.

This is also stationary. Expressions for C(h) and ρ(h) can be given, but they’re more
“messy” than in the first-order case.

3. Autoregressive model of order 1, AR(1)

Z(t) = φ1Z(t− 1) + et,

where the et’s are iid N(0, σ2
e) and φ1 is a parameter satisfying |φ1| < 1, and we “start

up” the process by defining Z(0) ∼ N(0, σ2
e

1−φ2

1

), independently of the et’s.

With some effort it can be shown that

var(Z(t)) =

cov(Z(t), Z(t+ 1)) =

cov(Z(t), Z(t+ h)) =

ρ(h) =
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4. Extension of AR(1) to AR(p)

Z(t) = φ1Z(t− 1) + φ2Z(t− 2) + · · ·+ φpZ(t− p) + et,

where the et’s are iid N(0, σ2
e) and φ1, . . . , φp are parameters satisfying certain compli-

cated constraints.

This is also stationary, provide that appropriate “start-ups” are specified. Expressions
for C(h) and ρ(h) can be given, but they’re more “messy” than in the first-order case.

5. ARMA models, e.g. ARMA(1,1)

Z(t) = φ1Z(t− 1) + at − θ1at−1

6. Random walk
Z(t) = Z(t− 1) + at,

where the at’s are iid N(0, σ2
a) and Z(0) ≡ 0.

Note: Unlike the previous examples, a random walk is nonstationary (see problem in
Homework 2).

To allow for nonzero mean or nonconstant mean in these models, we simply subtract the
mean function from each Z(t). For example, the model equations for the MA(1) and AR(1)
with nonconstant means are respectively as follows:

Z(t) −m(t) = at − θ1at−1,

Z(t) −m(t) = φ1[Z(t− 1) −m(t− 1)] + et

For example, we might take m(t) = β0 (constant mean) or m(t) = β0 + β1t (linear trend).
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V. MODELS FOR GEOSTATISTICAL DATA

We now consider models for data observed at possibly irregularly spaced points within a
two-dimensional (or even higher-dimensional) region where the process is also defined.

1. Isotropy

We have already defined the notions of a mean function, a covariance function, and sta-
tionarity. In two and more dimensions, we also have the notion of isotropy, which further
simplifies modeling and inference.

Isotropy of {ǫ(s): s ∈ D} requires that the covariance between any two values of ǫ(·) depends
only on the Euclidean distance between their corresponding locations, i.e.,

C(h) = C(‖h‖) = C([h′h]1/2) for “all” h.

Under isotropy the equicorrelation contours, i.e. the locations of all the variates that are
equally correlated with any given variate, lie on the perimeter of a circle (in 2-D space)
centered at the given variate’s location.

Types of anisotropy:

1. Geometric anisotropy. A covariance function is geometrically anisotropic if a positive
definite matrix A exists such that

C(h) = C([h′Ah]1/2) for “all” h.

• The equicorrelation contours are ellipses (in 2-D).

• Isotropy can be regarded as the special case in which A = I.

2. Zonal anisotropy — Any kind of anisotropy that is not geometric.
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2. Models for the Covariance Function

As for the mean function, the principle of spatial continuity suggests that we consider rela-
tively smooth functions as models for covariance functions. However, there are two important
differences in modeling covariance functions:

1. Not every function satisfies the inherent mathematical requirements of a covariance
function.

2. Among those functions that do satisfy the inherent mathematical requirements of a
covariance function, they may do so only for certain parameter values. That is, the
parameters may be constrained.

The mathematical requirements of a second-order stationary covariance function are as fol-
lows:

1. Evenness, i.e.
C(h) = C(−h) for “all” h.

2. Nonnegative definiteness, i.e.

n∑

i=1

n∑

j=1

aiajC(si − sj) ≥ 0

for all n, all sequences {ai: i = 1, . . . , n}, and all sequences of spatial locations {si:
i = 1, . . . , n}.

Bochner’s Theorem from analysis tells us, in effect, that any real-valued characteristic func-
tion of a d-dimensional random vector X is even and nonnegative definite, and thus any
real-valued d-dimensional characteristic function could serve as a valid covariance function
in Rd.

The properties of evenness and nonnegative definiteness imply the following facts:

1. C(0) ≥ 0

2. |C(h)| ≤ C(0) for all h

Furthermore, the principle of spatial continuity and some other related notions suggest that
we mainly (though not exclusively) consider models for which:

1. C(h) decreases as the inter-site distance, ‖h‖ ≡ (h′h)1/2, increases in any given direc-
tion.

2. C(h) → 0 as ‖h‖ increases.

3. C(h) ≥ 0 for all h.
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Examples of isotropic covariance function models (letting r = ‖h‖):

• Triangular (tent, piecewise linear) model (valid in R1 only)

C(r; θ) =

{
θ1(1 − r/θ2) for 0 ≤ r ≤ θ2
0 for r > θ2

(θ1 ≥ 0, θ2 ≥ 0)

• Spherical model

C(r; θ) =




θ1
(
1 − 3r

2θ2
+ r3

2θ3

2

)
for 0 ≤ r ≤ θ2

0 for r > θ2
(θ1 ≥ 0, θ2 ≥ 0)

• Exponential model

C(r; θ) = θ1 exp(−r/θ2) (θ1 ≥ 0, θ2 ≥ 0)

• Gaussian model

C(r; θ) = θ1 exp(−r2/θ2) (θ1 ≥ 0, θ2 ≥ 0)
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• Rational quadratic model

C(r; θ) = θ1(θ2 −
r2

1 + r2/θ2
) (θ1 ≥ 0, θ2 ≥ 0)

• Cosine model
C(r; θ) = θ1 cos(r/θ2) (θ1 ≥ 0, θ2 ≥ 0)

• Wave or hole-effect model

C(r; θ) = θ1θ2
sin(r/θ2)

r
(θ1 ≥ 0, θ2 ≥ 0)

• Matern class of models

C(r; θ) = θ1
1

2θ3−1Γ(θ3)
(
2r
√
θ3

θ2
)θ3Kθ3

(
2r
√
θ3

θ2
) (θ1 ≥ 0, θ2 ≥ 0, θ3 > 0)
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• Compare to the “no-correlation” or nugget effect model:

C(r; θ) =

{
θ1 for r = 0
0 for r > 0

(θ1 ≥ 0)

Some notes about these covariance models:

• The triangular, exponential, spherical, Gaussian, rational quadratic, and Matern mod-
els all decrease monotonically to 0 as distance increases; thus they conform to the
principle of spatial continuity.

• The wave, or hole-effect model, also tends to 0 as distance increases, but not mono-
tonically. It would be appropriate if there is some kind of periodic co-variation in the
data that damps out over space.

• The cosine model does not tend to 0 as distance increases. It would be appropriate
only if there is periodic co-variation that does not damp out over space.

• Exponential model = Matern model with θ3 = 1
2
; Gaussian model = Matern model as

θ3 → ∞.
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Attributes of these covariance models:

• Scale parameter, or variance. For most of these models, C(0) = θ1. Thus for these
models, θ1 is the constant variance of the random field. For the other models, θ1 affects
the variance.

• Correlation scale parameter. For each of these models, θ2 is a parameter that controls
how fast the covariance changes.

• Range, or effective range.

– The range of an isotropic covariance function, if one exists, is defined as the
distance beyond which the covariance function is equal to 0. Of the models listed,
only the triangular and spherical models have a range (which is equal to θ2 for
them).

– For isotropic models that do not have a range, the effective range, if one exists,
is defined as the distance beyond which the covariance function does not exceed
0.05×variance. The exponential, Gaussian, rational quadratic, Matern, and wave
models all have effective ranges; the cosine model, however, does not.

• Continuity at 0. Observe that all of these covariance functions are continuous at
0, except for the nugget effect model. Continuity of a covariance function at 0 has
implications for the behavior of the random field, as we will see shortly.

• Shape parameter. For the Matern model, θ3 controls the “shape” of the function near
0.
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From basic covariance models such as the ones just listed, we can construct more complicated
models using the following rules:

• A valid isotropic covariance function in Rd1 is a valid isotropic covariance function in
Rd2 if d1 > d2. The converse, however, is not true; a counterexample is the triangular
model, which is valid in R1 but not in higher dimensions. With the exception of the
triangular model, all the models we’ve listed are valid in R2 and R3.

• If C1(·) and C2(·) are valid covariance functions in Rd, then so is C(·) ≡ C1(·) +C2(·).

An important special case of this construction occurs when C1(·) is the “no-correlation”
model, in which case we can write the sum as

C(r; θ) =

{
θ0 + C2(0; θ) for r = 0
C2(r; θ) for r > 0.

θ0 is called the nugget effect. A covariance function that has a nonzero nugget effect is
discontinuous at zero.

• If C0(·) is a valid covariance function in Rd and b > 0, then C(·) ≡ b · C0(·) is a valid
covariance function in Rd.

• If C1(·) and C2(·) are valid covariance functions in Rd1 and Rd2 , respectively, then
C(·) ≡ C1(·) × C2(·) is a valid covariance function in Rd1+d2.
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3. Intrinsic Stationarity and the Semivariogram

Traditionally, geostatistical practitioners have adopted a slightly more general kind of sta-
tionarity assumption on {ǫ(s): s ∈ D} than second-order stationarity, and they have mod-
elled the small-scale spatial variation through a function somewhat different than the covari-
ance function.

The more general stationarity assumption is called intrinsic stationarity, which specifies
that:

1. The mean is constant;

2. 1
2
var[ǫ(s) − ǫ(t)] (= 1

2
var[Z(s) − Z(t)]) depends only on the lag s− t, i.e.,

1

2
var[ǫ(s) − ǫ(t)] = γ(s − t), for all s, t ∈ D.

The function γ(·) defined by the second condition above is called the semivariogram.

A “typical” isotropic semivariogram:
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Remarks:

• The semivariogram can be defined by the same expression for a non-intrinsically sta-
tionary process, but in that case it must be represented as γ(s, t).

• The semivariogram can also be expressed as follows:

γ(h) =
1

2
E{[ǫ(s) − ǫ(t)]2} =

1

2
E{[Z(s) − Z(t)]2}, where h = s − t.

• A second-order stationary random process with covariance function C(·) is intrinsically
stationary, with semivariogram

γ(h) = C(0) − C(h),

but the converse is not true in general. That is, intrinsic stationarity is more general
than second-order stationary. Proof:

• A valid semivariogram model must satisfy four mathematical properties:

1. Vanishes at 0, i.e., γ(0) = 0.

2. Evenness, i.e., γ(−h) = γ(h).

3. Conditional nonpositive definiteness, i.e.,
n∑

i=1

n∑

j=1

aiajγ(si − sj) ≤ 0

for all n, all s1, . . . , sn, and all a1, . . . , an such that
∑n

i=1 ai = 0.

4. lim‖h‖→∞{γ(h)/‖h‖2} = 0.

A function that satisfies these four properties is called a valid semivariogram model.
Validity of a semivariogram in Rd1 implies validity in Rd2 if d1 > d2, but the converse
is not true.

The same issues we noted for covariance models suggest that we mainly (though not exclu-
sively) consider semivariogram models that increase as distance increases.

Semivariogram attributes (these don’t always exist):

• Sill = lim‖h‖→∞ γ(h)

• Range or effective range

• Nugget effect = lim‖h‖→0 γ(h)

• Slope
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Examples of valid models for isotropic semivariograms:

• Triangular (valid in R1 only).

γ(r; θ) =

{
θ1r/θ2 for 0 ≤ r ≤ θ2
θ1 for r > θ2

(θ1 ≥ 0, θ2 ≥ 0)

• Spherical

γ(r; θ) =




θ1
(

3r
2θ2

− r3

2θ3

2

)
for 0 < r ≤ θ2

θ1 for r > θ2
(θ1 ≥ 0, θ2 ≥ 0)

• Exponential
γ(r; θ) = θ1{1 − exp(−r/θ2)} (θ1 ≥ 0, θ2 ≥ 0)

• Gaussian
γ(r; θ) = θ1{1 − exp(−r2/θ2)} (θ1 ≥ 0, θ2 ≥ 0)

• Cosine
γ(r; θ) = θ1{1 − cos(r/θ2)} (θ1 ≥ 0, θ2 ≥ 0)
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• Linear
γ(r; θ) = θ1r (θ1 ≥ 0)

• Power
γ(r; θ) = θ1r

θ2 (θ1 ≥ 0, 0 ≤ θ2 < 2)

• Logarithmic
γ(r; θ) = θ1 log r (θ1 ≥ 0)

• No-correlation (pure nugget) model

γ(r; θ) =

{
0 for r = 0
θ1 for r > 0

(θ1 ≥ 0)

For second-order stationary processes, the spatial dependence can be described by either the
covariance function or the semivariogram. Each has its advantages.
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On this page and the one that follows, we demonstrate that the “range parameter” of the
exponential and Gaussian semivariograms in the gstat package of R does not coincide with
the range, or the effective range, as we’ve defined it here; and we display what the “partial
sill parameter” is.

The exponential (left column) and Gaussian (right column) semivariograms displayed below
all have a sill of 1.0 and a nugget of 0. The first, second, and third rows of plots have range
parameters 2, 5, and 10, respectively. In fact, for the exponential model the range parameter,
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a, is related to the practical range (PR) as follows: PR = a × ln 20
.
= 3a. This is obtained

by putting
1 − exp(−r/θ1) = 0.95,

replacing r and θ1 with PR and a, respectively, and solving for PR in terms of a. The
relationship between a and PR for the Gaussian model is similarly found to be as follows:
PR

.
=

√
3a.
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The exponential semivariograms displayed below all have a range parameter of 5. Upper
left plot: partial sill=1.0, nugget=0, sill=1.0. Lower left plot: partial sill =1.0, nugget=0.5,
sill=1.5. Upper right plot: partial sill=0.5, nugget=1.0, sill=1.5. Lower right plot: partial
sill=1.0, nugget=1.0, sill=2.0.
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4. Modeling Anisotropy

(a) Range anisotropy

• Kind of anisotropy seen most often in practice.

• Geometric anisotropy is the easiest to model. Any valid isotropic model can be gen-
eralized to make it geometrically anisotropic. This is done by replacing ‖h‖ in the
isotropic model by (h′Ah)1/2, where A is a d× d positive definite matrix.

• Generally we don’t know the true value of A, so the sensible thing to do is to regard
its elements as unknown parameters.

• For example, a geometrically anisotropic exponential covariance function in R2 is

C(h; θ) = θ1 exp[−θ2(h2
1 + 2θ3h1h2 + θ4h

2
2)

1/2)]

– Note: θ3 = 0, θ4 = 1 ⇔ isotropy

– Also note: θ3 = 0, θ4 = 4 ⇔ spatial correlation is twice as persistent in the E-W
direction as in the N-S direction; and correlation strength in all other directions
is intermediate between these two. [E-W range = 2 × N-S range]

• Non-geometric range anisotropy is possible, but seems to occur rarely.

(b) Sill anisotropy
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It can be shown that if the sill exists but is direction-dependent, then either:

• a second-order stationary model is appropriate but the spatial correlation does not
vanish in every direction as inter-site distance increases;

• the assumption of second-order stationarity is violated; or

• there are measurement errors which are correlated or do not all have mean zero.

Either of the first two possibilities implies that standard estimation methods (yet to be de-
scribed) are ill-advised.

(c) Nugget anisotropy

• Can be caused by correlated measurement errors.

• Typically occurs in one direction only, which is not difficult to model.

(d) Slope anisotropy

Can be dealt with in a similar fashion as geometric range anisotropy.
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5. The Classical Geostatistical Model, in Summary

The general model we have constructed, which will form the basis for our analysis of geosta-
tistical data, is as follows:

Z(s) = m(s; β) + ǫ(s)

where:

• m(·; β) is a specified family of continuous functions

• β is a vector of unknown, unconstrained parameters

• {ǫ(s): s ∈ D} is a second-order stationary or intrinsically stationary process with mean
zero and valid covariance function C(·; θ) or semivariogram γ(·; θ)

• θ is a vector of unknown parameters constrained to lie in a parameter space Θ.

If the mean function is linear, then the model for the observed data can be written in
vector/matrix form as follows:

Z = Xβ + ǫ,

where:

• X =




f1(s1) f2(s1) . . . fp(s1)
f1(s2) f2(s2) . . . fp(s2)

...
...

...
f1(sn) f2(sn) . . . fp(sn)




• var(Z) = var(ǫ) = V = V(θ).

52



VI. INFERENCE FOR GEOSTATISTICAL DATA

1. Overview of the Geostatistical Method

1. Using exploratory techniques, prior knowledge, etc., posit a model for {Z(s): s ∈ D}
of the form we described in the previous unit.

2. Estimate β in m(s; β), e.g. by ordinary least squares, median polish, or some other
method that does not require knowledge of the second-order dependence structure.

3. Using fitted residuals (if necessary) from the previous step, estimate γ(h) or C(h)
nonparametrically and plot it (in several directions).

4. Select a valid semivariogram model γ(h; θ) or covariance function C(h; θ) that is com-
patible with the plot from the previous step.

5. Fit the chosen model to the estimated semivariogram or covariance function to estimate
the model’s parameters.

6. Using the fitted semivariogram or covariance function, re-estimate β by estimated
generalized least squares (or by some other method that accounts for correlation among
observations).

7. Repeat Steps 3-6, if desired.

8. “Krige” (i.e. predict) unobserved values at sites (or over regions) of your choosing and
estimate the corresponding variances of prediction error.

9. Determine optimal locations to take additional observations, and repeat Steps 1-8, if
desired.
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2. Estimating the Mean Function by Ordinary Least Squares Methods

If the mean function m(s; β) is a linear (or nonlinear) function of the elements of β, then
linear (or nonlinear) least squares can be used to fit the mean function to the data.

At this point we will briefly review the most important aspects of multiple linear regression
analysis for us, starting with notation:

• Observations are available on p + 1 scalar variables Z, x1, x2, . . . , xp from each of n
items or individuals.

• Denote these observations as

Z1, x11, x12, . . . , x1p

Z2, x21, x22, . . . , x2p

...

Zn, xn1, xn2, . . . , xnp

• We wish to study how the observed values of Z (known as the dependent or response
variable) might be explained by the observed values of the remaining variables (called
the explanatory variables).

• A linear model specifies that the relationship between Z and the explanatory variables
is of the form

Zi = xi1β1 + xi2β2 + · · ·+ xipβp + ǫi, i = 1, . . . , n (1)

where β1, . . . , βp are fixed, unknown parameters and ǫi is an unobservable random
disturbance or residual.

• The model is said to be linear because apart from the residual ǫi, Zi is a linear combi-
nation of the unknown parameters, i.e. Zi − ǫi =

∑p
j=1 xijβj .

• In vector/matrix notation, the linear model can be rewritten as

Z = Xβ + ǫ

where

Z =




Z1

Z2
...
Zn



, X =




x11 x12 · · · x1p

x21 x22 · · · x2p
...

xn1 xn2 · · · xnp



, β =




β1

β2
...
βp



, ǫ =




ǫ1
ǫ2
...
ǫn



.
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Classical Assumptions:

• The xij ’s are nonrandom (thus so is X). We will also assume that they are linearly
independent (thus X has full rank).

• The ǫi’s are uncorrelated and have common mean 0 and common unknown positive
variance σ2 (thus E(ǫ) = 0 and var(ǫ) = σ2I).

• The ǫi’s are jointly normally distributed (thus ǫ ∼ N(0, σ2I)).

Important Inference Problems:

• Estimation (point and interval) of the elements of β and of other linear functions of
the form c′β.

• Estimation of σ2.

• Hypothesis testing on the elements of β and on functions c′β.

• Prediction (point and interval) of “new” Z-observations corresponding to specified
values of the xij ’s.

Ordinary Least Squares Estimation (OLSE):

• OLSE of β is the value of β that minimizes the residual sum of squares criterion,

RSS(β) =
n∑

i=1

(Zi −
p∑

j=1

xijβj)
2 = (Z −Xβ)′(Z − Xβ).

• Equivalently, β̂OLS = (X′X)−1X′Z.

• OLSE is also the best (minimum variance) unbiased estimator and the maximum like-
lihood estimator (MLE).

• var(β̂OLS) = σ2(X′X)−1

• Fitted regression equation is

Ẑ = x1β̂1,OLS + x2β̂2,OLS + · · ·+ xpβ̂p,OLS

• Standard estimator of σ2 is σ̂2
OLS = RSS(β̂OLS)/(n− p).

• To test H0: Cβ = d vs. HA: Cβ 6= d at α level of significance, compare

(Cβ̂OLS − d)′[C(X′X)−1C′]−1(Cβ̂OLS − d)

σ̂2
OLS · (# rows of C)

to upper α percentage point of F (# rows of C, n− p) distribution.
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Adaptation of Classical Regression Model to Spatial Data:

• Suppose that all of the variables are observed at distinct, known locations.

• Suppose that the locations are in 2-D space. Then denote a generic location by s =
(u, v) and attach this as a label to each variable, i.e. Zi → Z(si) and xij → xj(si).

• The model can be written as

Z(si) = x1(si)β1 + x2(si)β2 + · · ·+ xp(si)βp + ǫ(si).

• Some of the explanatory variables may be explicit functions of geographic coordinates,
while others may not be.

• Example 1: Snow water equivalent (SWE) in western U.S.

Z(s) = April 1 SWE at s

x1(s) = u (longitude)

x2(s) = v (latitute)

x3(s) = elevation at s

x4(s) = slope at s

x5(s) = aspect at s

x6(s) = average winter wind speed at s

x7(s) = 1 if s is on windward side of mountain range, 0 otherwise

Trend Surface Analysis:

• If all of the explanatory variables in the classical linear regression model are explicit
functions of geographic coordinates, then we have a trend surface model. Trend surface
analysis is merely an ordinary least squares regression analysis of such a model.

• In trend surface analysis, the geographic coordinates (and functions thereof) may be
serving as proxies for explanatory variables that we did not or could not observe.

• The most commonly-used family of trend surface models is the family of polynomial
functions of geographic coordinates.

First-order polynomial (planar) trend surface model:

Z(s) = Z(u, v) = β1 + β2u+ β3v + ǫ(u, v)

Second-order polynomial (quadratic) trend surface model:

Z(s) = β1 + β2u+ β3v + β4u
2 + β5uv + β6v

2 + ǫ(u, v)

Third-order polynomial (cubic) trend surface model:

Z(s) = β1 + β2u+ β3v + β4u
2 + β5uv + β6v

2 + β7u
3 + β8u

2v + β9uv
2 + β10v

3 + ǫ(u, v)
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Trend surface analysis is quite easy to implement, since the necessary computing software
(PROC REG in SAS, lm in R) is widely available. It does have some drawbacks/limitations/problems,
however:

• the fitting procedure is very sensitive to outliers;

• the regression variables (which in this case are the data’s spatial coordinates or func-
tions thereof) tend to be highly correlated (multicollinearity), which causes the fitting
procedure to be numerically unstable;

• the fitted surface in portions of the study region where there are no data tends to be
distorted so as to better fit the observed data.

Often these drawbacks can be finessed, but only at the expense of making the fitting proce-
dure more complicated.

For spatial data observed on a rectangular grid, there is another potentially useful family of
trend surface models: row-column effects models

Z(s) = Z(u, v) = β1 + β1+u + β1+u+v + ǫ(u, v)

where u is the column number and v is the row number.

Features/drawbacks:

• Eliminates distortion and multicollinearity problem.

• Still sensitive to outliers.

• Implies row-column additivity (no interaction).

• Restricted to data whose locations lie on a rectangular grid.

Methodologies have developed to deal with outliers (e.g. median polish fitting) and lack of
flexibility (nonparametric regression).
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3. Estimating the Mean Function by Median Polish

• Assume that the data lie on the nodes of a p×q rectangular grid {(xl, yk): k = 1, . . . , p;
l = 1, . . . , q} (or have been assigned to such). Regard the grid nodes as cells in a 2-way
table.

• Median polish takes the model for the mean function to be

m(xl, yk; β) = a+ rk + cl.

• The model is fit by operating iteratively on the data in this table, alternately subtract-
ing row medians and column medians, and accumulating these medians in an extra
column and row of cells.

• Repeat this procedure until another iteration produces virtually no change.

• Final entries in the extra cells are the median polish estimates of row effects r1, . . . , rp,
column effects c1, . . . , cq, and an overall effect a.

• Final entries in the body of the table are residuals ǫ̂kl such that

Z(xl, yk) = â + r̂k + ĉl + ǫ̂kl.

• The relevant R function is medpolish().

Toy example:
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Completing a median polish surface over the study area:

• The fitted values at data locations are

m(xl, yk; β̂) = â+ r̂k + ĉl.

• Construction of a continuous surface over all of A from the mean/median polish fits at
data locations can be done by planar interpolation. For s = (x, y)′ in the rectangular
region between the four nodes (xl, yk)

′, (xl+1, yk)
′, (xl, yk+1)

′, (xl+1, yk+1)
′, where xl <

xl+1 and yk < yk+1, the fit is given by the planar interpolant

â + r̂k +

(
y − yk

yk+1 − yk

)
(r̂k+1 − r̂k) + ĉl +

(
x− xl

xl+1 − xl

)
(ĉl+1 − ĉl).

Similar formulas are applicable for extrapolation when x < x1, x > xq, y < y1, or
y > yp.

Example: Sulfate deposition data. (Since data locations are irregularly spaced, rows and
columns of a two-way table were formed by superimposing a 6 × 15 square grid of spacing
4 deg latitude and longitude.)
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Median polish avoids some of the pitfalls of least squares:

• more resistant to outliers

• residuals from a median polish are less biased than those from OLS

However, the assumed row-column additivity and the blurring associated with irregularly
spaced data are drawbacks.

4. Estimating the Mean Function by Locally Weighted Least Squares (lowess)

• Only assumes that the mean function is smooth.

• Estimates this smooth trend in a moving fashion by fitting a site-specific first-order or
second-order polynomial to only the most proximate data to a site. For example, for
the sulfate deposition data, we might use only data within a 100-mile radius of any
given site.

• Fits the trend using weighted least squares, with weights inversely related to distance
from the site.

• The relevant R function is loess().
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Note: None of the fitting methods in this unit have accounted for spatial correlation among
the responses. But they are the necessary precursor for estimating spatial correlation in the
next step of the geostatistical method.
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5. Nonparametric Semivariogram/Covariance Function Estimation

The raw ingredients for semivariogram estimation are either:

• the observations {Z1, . . . , Zn}, if the mean function is taken to be constant;

• the residuals
ǫ̂(si) = Z(si) −m(si; β̂), (i = 1, . . . , n)

from a fitted mean function at the data locations, otherwise.

Assume for simplicity that the study region is in 2-D space and that there are no replicate
measurements at data locations. Also assume, initially, that the data locations lie on a
regular rectangular grid.

The basic idea is to estimate γ(h) by one-half the average squared difference of responses or
residuals whose data locations are lagged by h.

The sample semivariogram (also empirical or estimated semivariogram):

γ̂(hu) =
1

2N(hu)

∑

si−sj=hu

{ǫ̂(si) − ǫ̂(sj)}2

(u = 1, . . . , k).

• Here h1, . . . ,hk are the distinct values of h represented in the data set.

• Attention can be restricted to lags with displacement angles in the interval [0, π) since
γ(h) is an even function.

• N(hu) is the number of times that lag hu occurs in the data set. (We don’t double-
count.)

• This is a method-of-moments type estimator.

• The estimator is unbiased if the observations themselves are intrinsically stationary,
and approximately unbiased under the model in which the mean is nonconstant.
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When data locations are irregularly spaced, we partition the lag space H = {s− t: s, t ∈ D}
into lag classes or “windows” H1, . . . , Hk, say, and assign each lag in the data set to one of
these classes. Then we use a similar estimator:

γ̂(hu) =
1

2N(Hu)

∑

si−sj∈Hu

{ǫ̂(si) − ǫ̂(sj)}2

(u = 1, . . . , k).

• Here hu is a representative lag for the whole lag class Hu; typically hu is taken to be
the centroid of Hu or the average of all the realized lags in the lag class.

• N(Hu) is the class frequency of Hu.

• The estimator is approximately unbiased; it is not exactly unbiased even in the case
where intrinsically stationary observations themselves are used because the grouping
of lags into classes causes a blurring effect.

• Two main types of partitions:

1. “Polar” partitioning, i.e., angle and distance classes

2. Rectangular partitioning
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Remarks:

• Generally we construct a plot of these estimates corresponding to each of several di-
rections.

• The polar partition more naturally allows for the construction of directional semivari-
ograms.

• Note that we only have estimates of γ(h) for a finite number of lags.

• How many lag classes (i.e. how fine a partition) should we use? A rule of thumb is to
require N(hu) ≥ 25 and hu to be less than half the maximum lag represented in the
dataset. But there is no harm in trying several different partitions.

• An alternative and more robust (less sensitive to outliers) estimator, proposed by
Cressie and Hawkins (1980, Journal of the International Association for Mathematical
Geology), is

γ̄(hu) =
{ 1

N(Hu)

∑
si−sj∈Hu

|ǫ̂(si) − ǫ̂(sj)|1/2}4

.914 + [.988/N(Hu)]

(u = 1, . . . , k).

• Both γ̂(h) and γ̄(h) can be computed in R using the variogram function in the gstat

package.
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Example: Sample semivariogram, assuming isotropy, for a dataset simulated on a 100× 100
square grid, from a Gaussian random field with isotropic exponential semivariogram, having
gstat variogram’s range argument equal to 5. Upper left plot uses default arguments;
upper right plot uses cutoff=35; lower left plot uses width=1; and lower right plot is the
Cressie-Hawkins robust sample semivariogram.
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For the covariance function, the classical estimator is

Ĉ(hu) =
1

N(Hu)

∑

si−sj∈Hu

(Z(si) − Z̄)(Z(sj) − Z̄).

Remarks:

• This estimator is meaningful only if the process is second-order stationary; otherwise
it’s estimating something that doesn’t exist.

• This estimator is the spatial generalization of the sample autocovariance function used
by time series analysts.

Comparison with semivariogram estimation:

• γ̂(h) 6= Ĉ(0) − Ĉ(h), but the difference is usually small for large n.

• If the estimates are based on the observations themselves, then Ĉ(h) is biased even for
regularly-spaced data whereas γ̂(h) is unbiased.

• If the estimates are based on residuals from a fitted mean function, then γ̂(h) is not
as biased as Ĉ(h).

• If there is trend in the data that is not removed, γ̂(h) is not as badly biased as Ĉ(h).
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6. Checking for Isotropy

Prior to fitting a parametric model to the sample semivariogram, we may wish to determine
how the semivariogram depends on the relative orientation of data locations. That is, we
may want to investigate whether isotropy would be a reasonable assumption for the data.

Methods:

1. Visual comparison of directional sample semivariograms

• At least three (preferably more) directions are needed to distinguish geometric
anisotropy from isotropy.

2. Rose diagram

• Consists of smoothing the directional sample semivariograms, then in the lag space
connecting, with a smooth curve, those lag vectors hu for which these smoothed
semivariograms are roughly equal.

• In effect, this plots estimated isocorrelation contours (in the case of a second-order
stationary process).

• Circular curves ⇒ isotropy; elliptical curves ⇒ geometric anisotropy.

3. Formal tests — we won’t consider this.
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Directional sample semivariograms (in the four directions N-S, NE-SW, E-W, NW-SE) for
the same dataset whose isotropic sample semivariogram is displayed on page 65:
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These plots were created using the alpha=c(0,45,90,135) argument in the variogram

function of gstat. It is possible to use angle classes different from these.
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7. Semivariogram Model Fitting

The next step of the geostatistical method is to select and fit a parametric family of models
to the sample semivariogram. Why aren’t we satisfied with the sample semivariogram itself?

• The sample semivariogram may be quite bumpy. A smoothed version may be helpful
for understanding the nature of the spatial dependence.

• The sample semivariogram may violate the required property of conditional nonnega-
tive definiteness.

• For various purposes (e.g. kriging) we may require an estimate of the semivariogram
at a lag not represented in the data.

Let γ(h; θ) denote the parametric model to be fit to the sample semivariogram and let Θ
denote the parameter space for θ.

Fitting methods:

(a) By eye

(b) Ordinary nonlinear least squares, i.e. minimize

RSS(θ) =
∑

u∈U

[γ̂(hu) − γ(hu; θ)]2.

Here U is a specified subset of lag classes believed to yield reliable estimates of γ(h). Gen-
erally U is taken to be of the form U = {u : N(hu) ≥ G1, ‖hu‖ ≤ G2}; one rule-of-thumb is
to take G1 = 30 and G2 = half the largest lag in the data. There may be good reasons for
using an even smaller maximum lag than this.

(c) Weighted nonlinear least squares (Cressie, 1985), i.e. minimize

WRSS(θ) =
∑

u∈U

N(hu)

[γ(hu; θ)]2
[γ̂(hu) − γ(hu; θ)]2.

The weights, N(hu)/[γ(hu; θ)]2, are small if either N(hu) is small or γ(hu; θ) is large. Thus,
nonparametric estimates at large lags tend to receive relatively less weight. The relevant R
gstat function is fit.variogram().

Actually, the default implementation of fit.variogram uses weights N(hu)/‖γ(hu; θ)‖2. If
you want to use the weights proposed by Cressie (1985), you must supply fit.variogram

with the argument fit.method=2. Incidentally, the argument fit.method=6 implements
ordinary nonlinear least squares.
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(d) Generalized nonlinear least squares

• For two lags h1 and h2, γ̂(h1) and γ̂(h2) generally are dependent for two reasons:

– They may be functions of some of the same observations;

– Even if they have no observations in common, observations in the one estimate
are generally spatially correlated with observations in the other.

• Consequently we may want to consider a generalized nonlinear least squares approach,
in which we minimize

GRSS(θ) = [γ̂ − γ(θ)]′[var(γ̂)]−1[γ̂ − γ(θ)].

• Here γ̂ is the vector of nonparametric semivariogram estimates and γ(θ) is the corre-
sponding vector of modeled semivariogram values.

• Derivation and calculation of var(γ̂) can be a challenge.

• The fit.variogram.gls function in gstat performs generalized nonlinear least squares
fitting to the variogram cloud (not the sample semivariogram).
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(d) Maximum likelihood (and restricted maximum likelihood)

• Applicable to processes with second-order stationary errors only.

• Estimates β and θ simultaneously.

• Let V = V(θ) denote the covariance matrix of Z = (Z1, . . . , Zn)
′ and let X denote the

model matrix for the model Z = Xβ + ǫ.

• Assuming normality, the log-likelihood function is (apart from an additive constant
which does not depend on β or θ)

L(β, θ;Z) = −1

2
log |V| − 1

2
(Z −Xβ)′V−1(Z− Xβ).

• A MLE is a value (β̂
′
, θ̂

′
)′ (where θ ∈ Θ) that maximizes L(β, θ).

• Generally a MLE must be found by numerical optimization routines (e.g. Newton-
Raphson, method of scoring, method of steepest ascent, grid search). Thus we have
to be concerned with things such as starting values, respecting constraints on the
parameters, and convergence criteria.

• A restricted MLE (REML estimator) is defined as a value θ ∈ Θ that maximizes the
log-likelihood function associated with n−rank(X) linearly independent error contrasts.
It’s known to be less biased than MLE’s, which is important if rank(X) is appreciable
relative to n.

• MLEs and REMLEs can be obtained using the likfit function of R’s geoR package.
However, SAS PROC MIXED seems a little faster and more stable, so we will use it
for this purpose.

Comparison of Fitting Methods:

The relatively easy-to-compute weighted least squares estimator performs almost as well as
the more complicated ML and REML estimators, and has been the estimator of choice for
most practitioners. Some statisticians still prefer the less ad hoc ML and REML estimators,
however.
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8. Model Selection Procedures

• Visual inspection of semivariogram plot

• Minimized weighted (or generalized) residual sum of squares function, WRSS(θ̂) (or
GRSS(θ̂)).

• Maximized log-likelihood (or restricted log-likelihood) function, L(β̂, θ̂).

• Penalized likelihood criteria, e.g. Akaike’s Information Criterion

AIC = L(β̂, θ̂) − # of estimated parameters.

Results for same data used on previous page: WRSS(θ̂) for exponential = 72.10, WRSS(θ̂)
for spherical = 60.02!

Real Example: Fitted Semivariogram Model for Sulfate Deposition Data

• First, a fifth-order polynomial surface was fit to the data by ordinary least squares,
and the residuals from this fit were used for further analysis.

• Based on a preliminary assessment of isotropy, the scale in the E-W direction was
halved and isotropic models were fit by WLS.

• A visual examination of the sample semivariogram suggested the use of a spherical or
exponential model with a nugget effect.

• Both models were fit by WLS; WRSS(θ̂) was 29% smaller for the spherical model.

• The fitted spherical semivariogram was

γ(‖h‖) =





0, if ‖h‖ = 0

.0802 + .1263
{

3
2

(
‖h‖
508.0

)
− 1

2

(
‖h‖
508.0

)3
}
, if 0 < ‖h‖ ≤ 508.0

.2065, if ‖h‖ > 508.0
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9. Spatial Regression

Recall our general geostatistical model:

Z(s) = m(s; β) + ǫ(s).

Trend surface, median polish, and nonparametric regression models all account for spatial
location only in the large-scale structure; they ignore small-scale structure through the as-
sumption that the model residuals are uncorrelated (and homoscedastic). Now we consider
models for which the residuals are spatially correlated.

For convenience assume that m(s; β) is linear in the elements of β, and assume that {ǫ(s) :
s ∈ D} is second-order stationary.

Let V = V(θ) be the n× n matrix whose (i, j)th element is C(si − sj ; θ). Then the model
for all the observations can be written as

Z = Xβ + ǫ, E(ǫ) = 0, var(ǫ) = V = σ2R

where V = V(θ) is a positive definite (hence invertible) covariance matrix, σ2 is the constant
variance, and R is a correlation matrix.

Toy example:

Assume constant mean β and isotropic spherical covariance function with range 4, sill 5, and
nugget 0:

C(r; θ) =

{
5
(
1 − 3r

8
+ r3

128

)
for 0 < r ≤ 4

0 for r > 4

Then X and V are

X =




1
1
1
1
1



, V = 5




1.000 .633 .492 .249 0
1.000 .633 .492 0

1.000 .633 .061
symm 1.000 .014

1.000




Finally suppose that the vector of responses is Z = (1, 0, 2, 1, 6)
′
.
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(a) Generalized least squares (GLS) estimation

• GLSE of β is the value of β that minimizes the generalized residual sum of squares
criterion,

GRSS(β) = (Z− Xβ)′R−1(Z− Xβ).

• Equivalently, β̂GLS = (X′V−1X)−1X′V−1Z = (X′R−1X)−1X′R−1Z.

• var(β̂GLS) = (X′V−1X)−1 = σ2(X′R−1X)−1.

• If the distribution of ǫ is multivariate normal, then the GLSE is also the best (minimum
variance) unbiased estimator and the maximum likelihood estimator (MLE).

• Fitted regression equation is

Ẑ = x1β̂1,GLS + x2β̂2,GLS + · · ·+ xpβ̂p,GLS

• Standard estimator of σ2 is σ̂2
GLS = GRSS(β̂GLS)/(n− p).

• To test H0: Cβ = d vs. HA: Cβ 6= d at α level of significance, compare

(Cβ̂GLS − d)′[C(X′R−1X)−1C′]−1(Cβ̂GLS − d)

σ̂2
GLS · (# rows of C)

to upper α percentage point of F (# rows of C, n− p) distribution.

GLS estimation for toy example:

GLS OLS

β̂ 2.83 2.00
σ̂2 5.15 5.50

var(β̂) 1.92 2.28

(variances calculated under correct model, i.e. model with correlation)

Note:

• Accounting for the substantial correlation among observations 1, 2, 3, and 4 affects the
estimation of β.

• var(β̂GLS) < var(β̂OLS) (both calculated under correct model)
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(b) Estimated generalized least squares (EGLS) estimation

In practice we don’t know the true value of θ and consequently V cannot be completely
specified. A natural solution to this problem is to to replace θ in the evaluation of V by
an estimator θ̂, obtaining V̂ ≡ V(θ̂), and then use all the formulas associated with GLS
estimation (as if θ̂ was the true value).

Thus, the EGLS estimator of β is given by

β̂EGLS = (X′V̂−1X)−1X′V̂−1Z.

We can approximately quantify the uncertainty of β̂EGLS via

v̂ar(β̂EGLS) = (X′V̂−1X)−1.

Facts:

• β̂EGLS is unbiased for β under rather unrestrictive conditions

• A closed-form expression for var(β̂EGLS) is not known

• v̂ar(β̂EGLS) tends to underestimate var(β̂EGLS)

EGLS estimation for toy example: Suppose the estimated range is 3.0, estimated sill is 4.0,
and estimated nugget is 0. Then

V̂ = 4




1.000 .519 .345 .089 0
1.000 .519 .345 0

1.000 .519 0
symm 1.000 0

1.000



.

(Compare to true V on page 71.) Note that the overall variation and spatial correlation are
both estimated as weaker here than they really are.

Then,
β̂EGLS = 2.70.
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(c) Maximum likelihood estimation

Assume multivariate normality of the observations. Then, the log-likelihood function is

L(β, θ) = L(β, σ2,R(θ)) = −n
2

log 2π − n

2
log σ2 − 1

2
log |R| − 1

2σ2
(Z−Xβ)′R−1(Z−Xβ).

The maximum likelihood estimators (MLEs) of β, σ2, and the parameters in R are given by

β̂MLE = (X′R̂−1X)−1X′R̂−1Z,

σ̂2
MLE =

1

n
(Z− Xβ̂)′R̂−1(Z− Xβ̂),

and R̂, where the latter maximizes the “profile log-likelihood” function

L∗(R) = −n
2

log(σ̂2
MLE) − 1

2
log |R|.

Remarks:

• β̂MLE is merely the EGLS estimator of β using MLEs of the variance and correlation
parameters.

• σ̂2
MLE is merely the residual sum of squares for EGLS, divided by the sample size.

• In general there is not an explicit formula for R̂. Grid search or other numerical
optimization methods (e.g. Nelder-Mead simplex or Newton-Raphson) must be used to
obtain it. For the latter, starting values and a convergence criterion must be specified.

• Care must be taken to ensure that R̂ remains in the allowable parameter space.

• Multiple modes of L∗(R) are possible.

• Standard errors for parameter estimates have been obtained under an assumption of
“increasing-domain asymptotics.” Confidence intervals for parameters can be con-
structed using these.

• V̂ = σ̂2
MLE · R̂.
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(d) Hypothesis Testing and Model Comparisons

Can test
H0 : Aβ = a versus HA : Aβ 6= a

at the α level of significance (approximately) by comparing

(Aβ̂EGLS − a)′[A(X′V̂−1X)−1A′]−1(Aβ̂EGLS − a)

Z′[V̂−1 − V̂−1X(X′V̂−1X)−1X′V̂−1]Z

to F (α, # rows of A, n− p).

To compare nested models, the above test can be used. To compare non-nested models, AIC
(defined previously) can be used.

10. Mean Structure or Covariance Structure?

One issue we’ve ignored to this point is that the choice, in practice, of a decomposition of
the data into mean structure (large-scale variation) and covariance structure (small-scale
variation) is not so clearcut. This is often phrased as follows:

“One man’s mean structure is another man’s covariance structure.”

An illustration: Five realizations from each of four one-dimensional random processes ob-
served at the locations s = 1, 2, . . . , 50.

(a) No trend, no correlation: Z(s) = 0 + ǫ(s), where {ǫ(s): s = 1, . . . , 50} are iid N(0,1)
random variables.

(b) Trend but no correlation. Z(s) = −0.5 + 0.02s + ǫ(s), where {ǫ(s): s = 1, . . . , 50} are
iid N(0,1) random variables.

(c) Correlation but no trend. Z(s) = 0 + ǫ(s), where {ǫ(s): s = 1, . . . , 50} are normally
distributed random variables with mean 0 and covariance structure determined by the ex-
ponential covariance function C(r) = exp(−r/5).

(d) Trend and correlation. Z(s) = −0.5 + 0.02s + ǫ(s), where {ǫ(s): s = 1, . . . , 50} are
normally distributed random variables with mean 0 and covariance structure determined by
the exponential covariance function C(r) = exp(−r/5).

If replications of a spatial process are available, statistical procedures exist for distinguishing
between these models. In practice, however, geostatistical data are not replicated so we must
settle for plausibility, rather than a high degree of certainty, of the proposed decomposition.
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Realizations of (a) (left column) and (b) (right column). Last panel in each column plots
the averages of the five plots above it.
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Realizations of (c) (left column) and (d) (right column). Last panel in each column plots
the averages of the five plots above it.

0 10 20 30 40 50

−
4

−
2

0

0 10 20 30 40 50

−
2

0
1

0 10 20 30 40 50

−
1.

0
0.

5

0 10 20 30 40 50

−
3

−
1

1

0 10 20 30 40 50

−
2.

0
0.

0

0 10 20 30 40 50

−
2

0
1

0 10 20 30 40 50

−
1

0
1

2

0 10 20 30 40 50

−
2

0
1

0 10 20 30 40 50

−
1

1
2

0 10 20 30 40 50

−
1

1
2

0 10 20 30 40 50

−
0.

5
0.

5

0 10 20 30 40 50

−
1.

5
0.

0

79



11. Spatial Prediction (Kriging)

(a) Ordinary Kriging Problem Formulation

Definition (Krige, 1978):

“The name given . . . to the multiple regression procedure for arriving at the best
linear unbiased predictor or best linear weighted moving average predictor of the
ore grade of an ore block (of any size) by assigning an optimum set of weights to
all the available and relevant data inside and outside the ore block.”

Krige’s original method is what is now called ordinary kriging (OK). There have been several
modifications and extensions (e.g., universal kriging, indicator kriging, disjunctive kriging,
and others) but they are all based on quite similar ideas.

The theory of OK is based on the same geostatistical model we have been using all along,
with two important restrictions:

1. The mean m(s) is assumed to be constant.

2. The semivariogram γ(h) is assumed to be known.

Let s0 denote an arbitrary location in D. Usually this will be an unsampled location but it
need not be.

Goal of kriging: to predict the value of Z(s0) at s0, using the observed responses Z(s1), . . . , Z(sn).

Properties of OK predictor:

1. It is a linear combination of the data values, i.e.,

Ẑ(s0) =
n∑

i=1

λiZ(si).

2. It is unbiased, i.e., it satisfies

E[Ẑ(s0)] = E[Z(s0)].

3. Among all functions of the data that satisfy the first 2 properties, it minimizes the
variance of prediction error, var[Ẑ(s0) − Z(s0)].
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The properties we have imposed on our predictor lead us to minimize

var[
n∑

i=1

λiZ(si) − Z(s0)]

subject to the restriction
n∑

i=1

λi = 1.

We will present OK in terms of the semivariogram; an equivalent presentation can be given
in terms of the covariance function.

(b) Ordinary Kriging Problem Solution

The method of Lagrange multipliers, from calculus, can be used to solve the constrained
minimization problem formulated previously. It can be shown that the optimal coefficients
λ1, . . . , λn of the OK predictor are the first n elements of the vector λO that satisfies the
following system of linear equations, known as the (ordinary) kriging equations:

ΓOλO = γO

where
λO = (λ1, . . . , λn, m)′

γO = [γ(s1 − s0), . . . , γ(sn − s0), 1]′

ΓO =





γ(si − sj) for i = 1, . . . , n; j = 1, . . . , n
1 for i = n+ 1; j = 1, . . . , n
0 for i = n+ 1; j = n+ 1

and m is a Lagrange multiplier and ΓO is symmetric.

The minimized variance, called the kriging variance, is

σ2
OK(s0) =

n∑

i=1

λiγ(si − s0) +m = λ′
OγO.
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Toy example:

1

2

3

4

5

6

0

Take γ(‖h‖) = 1 − exp(−‖h‖/2).

γO =




1 − exp(−
√

5/2)
1 − exp(−1/2)
1 − exp(−1)

1 − exp(−
√

2/2)
1 − exp(−1)

1 − exp(−
√

2/2)
1




ΓO =




0 1 − exp(−
√

2/2) 1 − exp(−
√

13/2) · · · 1

0 1 − exp(−
√

5/2) · · · 1
0 1

. . .
...

symm 0 1
0




λO = Γ−1
O γO = [.017, .422, .065, .218, .031, .246, .004]

σ2
OK(s0) = λ′

OγO = .478
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(c) Influence of Spatial Dependence on Ordinary Kriging

Consider the same spatial configuration as in the previous example, but with each of the
following four semivariograms:

1. γ(‖h‖) = 1 − exp(−‖h‖/2) (same model as in the example)

2. γ(‖h‖) = 1 − exp(−‖h‖/4) (stronger spatial correlation)

3. γ(‖h‖) = 0.25 + 0.75(1 − exp(−‖h‖/2)) (nonzero nugget, same sill)

4. γ(‖h‖) = 1−exp(−‖h‖/2) in E–W direction, γ(‖h‖) = 1−exp(−‖h‖) in N–S direction,
geometrically anisotropic with major axis in E–W orientation

Kriging weights and variances for these models:

Model 1 Model 2 Model 3 Model 4
λ1 .017 .001 .083 .033
λ2 .422 .450 .323 .504
λ3 .065 .049 .106 .015
λ4 .218 .230 .189 .136
λ5 .031 .010 .083 .177
λ6 .246 .261 .215 .135

σ2
OK(s0) .478 .254 .669 .546

83



(d) Explicit Matrix Expressions for OK Predictor and OK Variance

We can use some results from linear algebra to obtain alternative expressions for the ordinary
kriging predictor and the kriging variance which do not involve the unknown Lagrange
multiplier. Define

λ = (λ1, . . . , λn)′,

γ = (γ(s1 − s0), . . . , γ(sn − s0))
′,

Γ = {γ(si − sj)}.

It can be shown that

m = −(1 − 1′Γ−1γ)/(1′Γ−11),

λ = Γ−1{γ + [(1 − 1′Γ−1γ)/(1′Γ−11)]1}.

Therefore the OK predictor can be expressed as follows:

Ẑ(s0) = {γ + [(1 − 1′Γ−1γ)/(1′Γ−11)]1}′Γ−1Z.

The kriging variance can be expressed as follows:

σ2
OK(s0) = γ ′Γ−1γ − (1′Γ−1γ − 1)2/(1′Γ−11).

Also, it can be shown that if the process is second-order stationary, then we can express the
OK predictor and its kriging variance alternatively as

Ẑ(s0) = {v0 + [(1 − 1′V−1v0)/(1
′V−11)]1}′V−1Z

and
σ2

OK(s0) = C(s0, s0) − v′
0V

−1v0 + (1′V−1v0 − 1)2/(1′V−11)

where

v0 = (C(s1 − s0), . . . , C(sn − s0))
′,

V = {C(si − sj)}.
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(e) Some Miscellaneous Remarks

• We would generally want to characterize the uncertainty in our predictor. This can
be achieved with a confidence interval, or more properly, a prediction interval. If we
assume that the random field is Gaussian, then all the Z(si)’s are normally distributed
and so then is Ẑ(s0). Therefore, a 100(1 − α)% prediction interval for Z(s0) is as
follows:

Ẑ(s0) ± zα/2σOK(s0),

where zα/2 is the upper α/2 percentage point of the standard normal distribution.

• As we have described it here, the OK predictor is a linear combination of all the
observations. In practice, often only the observations within a “moving window” or
“kriging neighborhood” are used.

The nugget/sill ratio, the range, and the sampling configuration are important factors
in the choice of window size.

• Ordinary kriging is derived under an assumption of intrinsic stationarity, which assumes
the mean is constant. The variation of kriging that can handle trends is called universal
kriging (to be described shortly).

• Ordinary kriging also is derived under an assumption that the semivariogram is known.
In practice, the semivariogram is unknown and must be estimated, and the estimator
γ̂(·) replaces γ(·) in the kriging equations and in the expression for the kriging variance.

ˆ̂
Z(s0) = {γ̂ + [(1 − 1′Γ̂

−1
γ̂)/(1′Γ̂

−1
1)]1}′Γ̂−1

Z

σ̂2
OK(s0) = γ̂ ′Γ̂

−1
γ̂ − (1′Γ̂

−1
γ̂ − 1)2/(1′Γ̂

−1
1)

Note: The estimated kriging variance tends to underestimate the prediction error
variance of the estimated OK predictor because it does not account for the estimation
error incurred in estimating θ.
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(f) Sampling Design

Note that the kriging variance at any given site s0,

σ2
OK(s0) =

n∑

i=1

λiγ(si − s0) +m = λ′
OγO = γ ′

OΓ−1
O γO

does not depend on the observed responses. Thus, it can be used to address sampling design
questions, such as where to take one more observation to maximize the reduction in σ2

OK at a
certain point, or where to take one more observation to minimize the maximum (or average)
value of σ2

OK over the entire spatial domain. This is potentially very useful for environmental
monitoring programs.

Example 1: Consider the same sampling configuration as in the ordinary kriging toy example
presented a few pages back: Suppose we wish to minimize the kriging variance at s0, and we

1

2

3

4

5

6

0

have sufficient resources to take an observation at any one of the four remaining unsampled
sites (excluding s0).

The kriging variances at s0 corresponding to the addition of each of the sites a, b, c, and d
are as follows:

Additional site σ2
OK(s0)

a .4687
b .4366
c .4368
d .4347

Thus, the best additional site is d.
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Example 2:

• Consider a situation in which there are 25 potential data locations, which are arrayed
in a 5 × 5 square grid S with unit spacing.

• Suppose that potential observations at these locations are assumed to arise from a
stationary process with unknown (but constant) mean and an isotropic exponential
covariance function given by C(s,u) = θ1 exp(−‖s − u‖/θ2).

• Put ρ = exp(−1/θ2), and reparameterize the covariance function as C(s,u) = θ1ρ
‖s−u‖.

• Suppose we have enough resources to take a measurement at only 4 of the potential
data locations.

• Suppose we want to choose the 4 data locations to minimize the maximum kriging
variance over the 25 grid locations, i.e. maxs∈S σ

2
OK(s).

• For each value of ρ = 0.1, 0.2, . . . , 0.9, the optimal 4-point design is as follows:
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(g) Extensions of Ordinary Kriging

• Block Kriging. We have considered point kriging, i.e., prediction at a single point.
Sometimes it is desirable to predict the average value over an entire region, i.e.,

Z(B) ≡
∫
B Z(s) ds

|B| ,

where |B| is the area of the region (block) for which a predicted value is desired. For ex-
ample, mining engineers are interested in this because the economics of mining require
the extraction of material in relatively large units. Block kriging is a straightforward
extension of OK that accomplishes this.

The theoretical development of block kriging proceeds along similar lines as for point
kriging and yields ordinary block kriging equations,

ΓOλOB = γOB

where

γOB = [γ(B, s1), . . . , γ(B, sn), 1]′ and

γ(B, si) = |B|−1
∫

B
γ(u− si) du

The ordinary block kriging predictor of Z(B) is given by

Ẑ(B) =
n∑

i=1

λB,iZ(si)

where λB,1, . . . , λB,n are the first n elements of λOB.

The kriging variance is given by λ′
OBγOB − |B|−2

∫
B

∫
B γ(u− v) du dv.

• Universal Kriging (UK). Suppose that

Z(s) = β0 + β1f1(s) + β2f2(s) + · · ·+ βpfp(s) + ǫ(s)

where the fj(·)’s are functions of spatial location and ǫ(·) is intrinsically stationary.

Again, we wish to predict Z(s0) by a linear unbiased predictor, and to do so in such a
way that the variance of prediction error is minimized. That is, we seek to minimize

var[
n∑

i=1

λiZ(si) − Z(s0)]

subject to the unbiasedness constraint

E[
n∑

i=1

λiZ(si)] = β0 + β1f1(s0) + · · · + βpfp(s0) for all β.
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This constraint is actually a set of p+ 1 constraints:

n∑

i=1

λi = 1

n∑

i=1

λif1(si) = f1(s0)

...
n∑

i=1

λifp(si) = fp(s0)

Thus, in this minimization problem there are p+ 1 Lagrange multipliers. The algebra
is “messier” than with ordinary kriging but the end result is similar: the coefficients
in the UK predictor are the first n elements of the vector λU that satisfies the UK
equations

ΓUλU = γU .

Here,

λU = (λ1, . . . , λn, m0, m1, . . . , mp)
′,

γU = [γ(s0 − s1), . . . , γ(s0 − sn), 1, f1(s0), . . . , fp(s0)]
′

and ΓU is a symmetric (n+ p+ 1) × (n + p+ 1) matrix

ΓU =





γ(si − sj) i = 1, . . . , n; j = 1, . . . , n,
fj−1−n(si) i = 1, . . . , n; j = n + 1, . . . , n+ p+ 1,
0 i = n+ 1, . . . , n+ p+ 1; j = n+ 1, . . . , n+ p+ 1.

The univeral kriging variance is

σ2
UK(s0) = λ′

UγU

• Indicator Kriging. Ordinary and universal kriging both yield a predictor which is a
“location estimator” of the distribution of Z(s0)|Z; for example, the ordinary and uni-
versal kriging predictors are, under the appropriate models, estimates of E(Z(s0)|Z).
In some situations, however, the quantity P (Z(s0) ≥ z0|Z) is of more importance than
E(Z(s0)|Z). This is often true in environmental monitoring when there are prespeci-
fied standards, such as “ozone levels in air cannot exceed 2 ppm.” Indicator kriging is
a method for predicting such a quantity from data at nearby locations.

• Co-Kriging. In some situations, measurements at data locations are taken on more than
one variable. Co-Kriging simultaneously predicts all of these variables at unsampled
locations, utilizing data on all variables and exploiting dependence between variables
as well as spatial dependence within variables.
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(h) Kriging versus Inverse Distance Weighting (IDW)

Kriging (in all its forms) is merely one method for spatial interpolation. Another method,
highly favored by geo-scientists, is inverse distance weighting. In this approach, the predicted
(or estimated) value at any location where no observation was taken is a weighted linear
combination of the observed data, with weights inversely related to the distance from the
observed data location to the place at which we wish to predict.

Two examples, using our notation and letting d0i be the distance between si and s0:

1. ZIDW (s0) =
∑

i
d−1

0i
Z(si)∑

i
d−1

0i

2. ZIDSW (s0) =
∑

i
d−2

0i
Z(si)∑

i
d−2

0i

Note:

• Assuming that the random field is intrinsically stationary, IDW yields unbiased pre-
dictors.

• Since IDW is linear and unbiased under intrinsic stationarity, and OK yields the best
linear unbiased predictor, we see that IDW is inferior to OK. Some empirical work
demonstrates that the ordinary kriging variance is often 10% to 30% less than the
prediction error variance associated with IDW.

• IDW does not account for how strong (or weak) the spatial correlation is.

• Prediction error variances are not usually reported with IDW interpolations (though
they could be).

OK and IDW weights and variances for toy example on page 80:

OK IDW IDSW
λ1 .017 .116 .074
λ2 .422 .259 .370
λ3 .065 .129 .093
λ4 .218 .183 .185
λ5 .031 .129 .093
λ6 .246 .183 .185

PEV .478 .506 .488
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(i) Spatio-Temporal Regression and Prediction

Suppose that we have observed geostatistical data at each of m time points, i.e.,

{[Z(s1, ti), . . . , Z(sn, ti)] : i = 1, . . . , m}.

Here, s1, . . . , sn are the data locations (assumed to be the same across time) and t1 < t2 <
· · · < tm are the observation times.
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We can view such data in two ways:

1. A collection of spatially correlated time series

2. A collection of temporally correlated random fields

If the temporal correlation is weak and the data are rectangular, then sampling across time
gives nearly independent replications of the random field. One consequence of this is that
it is no longer necessary to assume spatial stationarity. If the temporal correlation is non-
neglible, however, then we generally proceed by assuming spatial and temporal stationarity
of some kind.

Two important inference problems:

• Estimate parameters (particularly those in the mean structure).

• Predict Z(s0, t0). Typically, t0 ≥ tm, i.e., the time at which we want to predict is either
at the most recent time of observation or some time in the future; s0 may or may not
be one of the data locations.
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In principle we could use ideas from spatial regression and kriging to perform spatio-temporal
regression and spatio-temporal prediction, but there are some new issues to consider:

• Data collected over time sometimes exhibit periodicity (e.g. seasonality). This can be
dealt with by using a mean model that has sine and cosine terms, e.g.

E(Z(s, t)) = β1 + β2u+ β3v + β4u
2 + β5uv + β6v

2

+ β7t+ β8 cos(2πβ10t) + β9 sin(2πβ10t)

• We must use a valid (nonnegative definite) space-time covariance function or semivar-
iogram to model the variance-covariance structure of the residuals. Suppose C(‖h‖)
is a valid isotropic spatial covariance function for h = (h1, h2) ∈ R2. To construct a
valid space-time covariance function, let t now represent the time lag and append it to
h; then consider using the same isotropic function, i.e.,

C(h, t) = C(
√
h2

1 + h2
2 + t2)

Unfortunately, the resulting covariance function is not always valid in R3. Even if
such a covariance function were valid, it may not be sensible because t is measured in
different units than spatial distance. Some methods for dealing with this are as follows:

– Include an extra parameter to scale properly for time, i.e.,

C(h, t) = C
(√

h2
1 + h2

2 + ψt2
)

where ψ ≥ 0. This is essentially a special type of geometrically anisotropic model.

– Assume space-time additivity, i.e.

C(h, t) = CS(h) + CT (t)

– Assume space-time separability, i.e.

C(h, t) = CS(h)CT (t)

Assuming that the aforementioned modeling issues are dealt with satisfactorily, the model
can be expressed as a general linear model

Z = Xβ + ǫ, ǫ ∼ N(0,V)

and we can proceed with MLE and other likelihood-based inferences, and with kriging, as
we do for purely spatial data.

The only widely available software that implements this is SAS PROC MIXED. It can handle
certain separable space-time covariance structures.
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VII. MODELS AND INFERENCE FOR LATTICE DATA

Recall the definition of lattice data: observations are taken at a finite number of sites whose
whole constitutes the entire study region. Unlike geostatistics, there is no possibility of a
response “between” data locations. Therefore, there is generally no need to predict unob-
served values.

Lattice data locations may be points or regions, but most cases where the data are points
can be handled using geostatistics (without the kriging step). So we shall focus primarily on
situations where data locations are regions. Furthermore, we shall generally consider only
the two-dimensional case.

Examples:

• Presence or absence of a plant species in square quadrats over a study area

• Numbers of deaths due to SIDS in the counties of North Carolina

• Pixel values from remote sensing (satellites)

Primary goals of statistical analysis:

• formulate a model

• estimate model parameters

• test hypotheses about model parameters

• compare models

Basis for model formulation:

• EDA techniques (such as those described previously)

• Measuring and testing for spatial correlation among the observations

93



1. Measuring and Testing for Spatial Autocorrelation

Our objective is to measure how strong the tendency is for observations from nearby regions
to be more (or less) alike than observations from regions farther apart, and then judge
whether any apparent tendency is sufficiently strong that it is unlikely to be due to chance
alone.

Examples of spatially autocorrelated data:
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A. The General Cross-Product Statistic

Notation:

• Let Zi denote the response at the ith location (i = 1, . . . , n).

• Let Yij be a measure of how similar or dissimilar the responses are at locations i and
j.

• Let Wij be a measure of the spatial proximity of locations i and j.

• For future reference, define matrices Y = (Yij) and W = (Wij).

The general cross-product statistic is

C =
∑

i

∑

j

WijYij.

Toy example: Consider trinary Zi’s, Yij = (Zi − Zj)
2, and

Wij =

{
1, if locations i and j are adjacent
0, otherwise.

Note in this example,

• C too small ⇒ positive spatial autocorrelation

• C too large ⇒ negative spatial autocorrelation
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B. Evaluating the Statistical Significance of C

• Comparison to randomization distribution

– List all possible arrangements of the observed responses over the locations (ob-
tained by permutation of responses).

– Compute C for each arrangement, and rank these.

– Determine where the data’s C-value fits in; P -value for the test is the number of
C-values in the randomization distribution as extreme or more extreme than the
observed C.

– Can do one-sided or two-sided tests.

– Toy example (continued):

• Monte Carlo approach

Motivated by the fact that complete enumeration of the possible arrangements may
be computationally prohibitive even for moderately-sized data sets. So instead, obtain
a random sample from the randomization distribution and follow the same type of
procedure.

1. Assign the numbers 1, 2, . . . , n randomly to the data locations.

2. Reassign the observations to data locations in accordance with this realization
of random numbers (the smallest observed value is assigned to the data location
assigned “1”, the next smallest observed value is assigned to the data location
assigned “2”, etc.

3. Compute C for this realization.

4. Repeat steps 1-3 m times.

5. Compute the P -value, which estimates the proportion of C-values as extreme or
more extreme than the observed C, by

P =
1 + number of C-values ≥ observed C

1 +m
.
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• Normal approximation, i.e., C
·∼ N(E(C), var(C)).

– Define

S0 =
∑∑

i6=j

Wij, S1 =
1

2

∑∑

i6=j

(Wij +Wji)
2, S2 =

∑

i

(Wi· +W·i)
2

– Define T0, T1, and T2 similarly but for the Yij’s.

– Compute

z =
|C −E(C)| − 1√

var(C)

where

E(C) =
S0T0

n(n− 1)

and

var(C) =
S1T1

2n(n− 1)
+

(S2 − 2S1)(T2 − 2T1)

4n(n− 1)(n− 2)
+

(S2
0 + S1 − S2)(T

2
0 + T1 − T2)

n(n− 1)(n− 2)(n− 3)
−[E(C)]2.

– Rule of thumb: To use this approximation, n should be at least 25.
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C. Join-Count Statistics (for use with binary data)

Based on a map of the data coded as either 1 (black) or 0 (white).

Spatial correlation will manifest as a pattern in which neighboring locations are more likely
to display the same color (or opposite colors) than would be expected in the absence of
spatial autocorrelation. To quantify this:

1. Classify all of the “joins” between contiguous regions as BB, BW, or WW. The most
popular definition of contiguity regards two sites as joined if they share an edge. In the
context of a rectangular lattice, this is called the rook’s definition. Other definitions
(e.g. bishop’s and queen’s) are possible.

2. Count the number of joins of a specified type, e.g. the # of BW joins ≡ BW .

3. Test this count for significance using one of the aforementioned testing approaches.

If we defineWij = 1 if regions i and j are joined (and 0 otherwise) and define Yij = 1
2
(Zi−Zj)

2,
then

BW =
∑

i

∑

j

WijYij,

i.e. BW is a special type of generalized cross-product statistic.

Likewise, BB is a special type of generalized cross-product statistic with Yij = 1
2
ZiZj.

BW seems to be slightly more sensitive at detecting autocorrelation than the other two, so
we will consider BW in further detail. Notation and results associated with the use of BW :

• Let b = # black regions and w = # white regions; note that b+ w = n.

• Can be shown that

T0 = bw, T1 = T0 = bw, T2 = nbw.

• If regions form a rectangular r× c lattice, and the rook’s contiguity definition is used,
then

S0 = 2(2rc− r − c), S1 = 2S0, S2 = 8(8rc− 7r − 7c+ 4).
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Example — the Atriplex hymenelytra data:

Remarks:

• The same approach can be used for data at irregularly spaced and shaped locations,
though the formulas given for S0, S1, and S2 no longer apply. (The formulas given for
T0, T1, and T2 are still okay though.)

• The test presented in the example is two-sided but a one-sided test, if more appropriate,
can be done easily.

• The same approach can be used for BB (and WW) joins. In the case of BB joins,

T0 =
1

2
b(b− 1), T1 = T0, T2 = b(b− 1)2.

• Extensions to polytomous categorical data (i.e. a multi-colored map) are possible.
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D. Moran’s and Geary’s Statistics (polytomous and continuous data)

Moran proposed the following autocorrelation statistic which can be used with polytomous
and continuous data:

I =
n
∑

i

∑
j Wij(Zi − Z̄)(Zj − Z̄)

S0
∑

i(Zi − Z̄)2
,

where Z̄ =
∑

iZi/n.

Geary proposed a similar statistic:

c =
(n− 1)

∑
i

∑
j Wij(Zi − Zj)

2

S0
∑

i(Zi − Z̄)2
.

Remarks:

• I resembles the ordinary correlation coefficient.

• Note that I = n
S0

∑
i
(Zi−Z̄)2

· C if we take Yij = (Zi − Z̄)(Zj − Z̄).

• Similarly, c may be related to C by taking Yij = (Zi − Zj)
2.

• I seems to be more popular than c, so we’ll focus on I.

• E(I) = − 1
n−1

under independence.

• I > − 1
n−1

⇒ positive autocorrelation.

• I < − 1
n−1

⇒ negative autocorrelation.

• Normal approximation to distribution of I under independence (n > 25):

E(I) = − 1

n− 1

var(I) =
[(n2 − 3n+ 3)S1 − nS2 + 3S2

0 ] − k[n(n− 1)S1 − 2nS2 + 6S2
0 ]

(n− 1)(n− 2)

− 1

(n− 1)2

where

k =

∑
i(Zi − Z̄)4

(
∑

i(Zi − Z̄)2)2
.

• For smaller sample sizes, can use randomization distribution or Monte Carlo approach
to evaluate significance.
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E. Generalized Proximity Values

So far our discussion of join-count statistics and the Moran and Geary statistics has assumed
that the Wij’s are binary (0 or 1). This is rather crude. In many situations we may be able
to measure spatial proximity on a more refined scale (as we do the Yij’s in going from BW
to I or c).

Possible refinements:

1. Use lengths of common boundary; this may more accurately reflect the amount of
inter-site interaction.

2. Use actual distance between locations or centroids of locations, e.g. the inverse of
Euclidean or city-block distance between locations. This recognizes the fact that in-
teraction between sites does not usually terminate sharply beyond places that share a
boundary.

3. Incorporate directionality (e.g. upstream vs. downstream) by allowing Wij 6= Wji.

A side benefit of using non-binary Wij’s is that the distribution of the test statistic under
independence is better approximated by the normal distribution.

F. Spatial Autocorrelation Functions

The statistics considered so far attempt to express information about spatial autocorrelation
in a single number. Alternatively, we could consider regarding spatial autocorrelation as a
function of distance. That is:

1. Divide the range of distances into q classes.

2. Compute a previously considered spatial autocorrelation measure, e.g. I, once for each
of the q distance classes; in other words, we use only those pairs of locations that are
within the same distance class.

3. Plot the statistic, e.g. Id, versus d. Such a plot is called the correlogram corresponding
to that statistic.

This last notion is essentially what we did with geostatistical data, when we measured spatial
dependence via the covariance function or semivariogram.
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2. Models for Lattice Data

Suppose that we find, either through EDA or formal testing, that the (lattice) data appear
to be spatially correlated. Then what?

Formulate one or more models that will allow responses to be correlated with responses at
nearby locations. The most useful models are:

• reasonably parsimonious

• readily interpreted

• computationally feasible to fit to the data

Lattice data can be continuous or discrete. Initially, we will restrict attention to continuous
data. Modeling binary and polytomous categorical lattice data is also known as image
analysis. Many concepts in image analysis are similar to those presented here, but it is
somewhat easier to model dependence in the continuous case.

A. Models for Data in One Dimension

Due to the discrete nature of the spatial locations of lattice data, the most popular models
are similar to commonly used models for discrete time series. Let us digress from spatial
statistics for a moment and review one very important time series model: the autoregressive
model of order one [AR(1)]:

Zt = ρZt−1 + ǫt, {ǫt} ∼ iid N(0, σ2), t = 0,±1,±2, . . .

where ρ ∈ (−1, 1) is called the autoregressive coefficient. Recall that corr(Zt, Zt−1) = ρ,
corr(Zt, Zt−2) = ρ2, and more generally, corr(Zt, Zt−k) = ρk.
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Actually, there are two ways to specify a first-order autoregressive model:

1. A simultaneous AR(1), as we’ve just given.

2. A conditional AR(1), as follows:

Zt|Zt−1 ∼ independent N(ρZt−1, σ
2(1 − ρ2)) t = 0,±1,±2, . . . .

It turns out that these two specifications are equivalent, i.e. they produce responses Z1, Z2, . . . , Zn

that have the same joint distribution. Note that interaction is “one-sided” in these models
due to the unidirectional flow of time.

As a partial step towards generalizing the notion of an autoregressive model to spatial data,
consider observations Z1, Z2, . . . , Zn taken at regularly-spaced locations on a line:

Though one-dimensional, our consideration of this situation differs from the classical time
series situation in two ways:

• Interactions may be “two-sided.”

• The domain is bounded.

The one-sided simultaneous and conditional AR(1) models, restricted to s = 1, . . . , n, could
be applied to this situation; alternatively we could consider two-sided versions. In its
simultaneously-specified form, the two-sided version is as follows:

Z1 = ρZ2 + ǫ1,

Zs =
ρ

2
Zs−1 +

ρ

2
Zs+1 + ǫs, s = 2, 3, . . . , n− 1

Zn = ρZn−1 + ǫn,

{ǫs} ∼ iid N(0, σ2).

Note that we needed to account for “edge effects,” i.e. the fact that Z1 and Zn each have
only one neighboring observation.
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B. Models for Data in Two Dimensions

How might we generalize to two dimensions? Consider a rectangular R×C lattice of equally
spaced sites and let Zu,v denote the observation in row u and column v. Then consider the
simultaneous spatial autoregressive model

Zu,v =
ρ

4
(Zu−1,v + Zu+1,v + Zu,v−1 + Zu,v+1) + ǫu,v,

u = 2, 3, . . . , R− 1, v = 2, 3, . . . , C − 1

with appropriate modifications for edge sites, and with errors ǫu,v satisfying {ǫu,v} ∼ iid N(0, σ2).

We can write this last representation using matrix notation, as follows:

Z = ρWZ + ǫ, ǫ ∼ Nn(0, σ2I),

where W is an n × n matrix (with n = RC) whose nonzero elements specify the neighbors
of each site. For example, if R = C = 3, then W is given by:
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We can generalize this spatial autoregression idea in many ways:

1. Alternative definitions of neighbors.

Zu,v = ρ ·
∑

(j,k)∈Nu,v
Zj,k

|Nu,v|
+ ǫu,v, {ǫu,v} ∼ iid N(0, σ2),

where Nu,v is the set of neighbors of location (u, v) and |Nu,v| is the number of those
neighbors.

2. Allow for irregular lattices.

Zi = ρ ·
∑

j∈Ni
Zj

|Ni|
+ ǫi, {ǫi} ∼ iid N(0, σ2), i = 1, . . . , n

where Ni is the set of neighbors of location i and |Ni| is the number of those neighbors.

3. Anisotropic and higher-order models.

Zi = ρ1 ·
∑

j∈N1i
Zj

|N1i|
+ ρ2 ·

∑
j∈N2i

Zj

|N2i|
+ ǫi, {ǫi} ∼ iid N(0, σ2), i = 1, . . . , n.
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4. Nonzero weights assigned to each site.

Zi =
∑

j

SijZj + ǫi, {ǫi} ∼ N(0, σ2), i = 1, . . . , n.

However, to be useful in practice, the Sij ’s must be parameterized in terms of a much
smaller set of parameters.

5. Allow for trend.

Zi − µi =
∑

j

Sij(Zj − µj) + ǫi, {ǫi} ∼ N(0, σ2), i = 1, . . . , n.

Spatial autoregressive models (general form):

1. Simultaneous autoregression (SAR)

Zi − µi =
∑

j

Sij(Zj − µj) + ǫi, {ǫi} ∼ N(0, σ2), i = 1, . . . , n

where S ≡ {Sij} is such that Sii = 0 and I−S is nonsingular. In matrix form, we can
write

Z − µ = S(Z − µ) + ǫ, ǫ ∼ Nn(0, σ
2I).

2. Conditional autoregression (CAR) (also known as Markov random fields, MRFs)

(Zi|Zj, j 6= i) ∼ N(µi +
∑

j

Cij(Zj − µj), σ
2),

where C ≡ {Cij} is such that Cii = 0 and I− C is symmetric and positive definite.

In contrast to an AR model for time series, the two specifications for spatial data yield
different models, i.e., if we take Cij = Sij the CAR yields responses whose joint distribution
is different than for the SAR.
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Specifically, it can be shown that

Z ∼
{
N (µ, σ2[(I − S)−1(I − S′)−1]) for an SAR
N (µ, σ2(I −C)−1) for a CAR

i.e. Z = µ + ǫ where ǫ ∼ N(0,V)

Note that in either case, V = σ2R, but R is not a correlation matrix.

We can generalize still further to allow the errors (“innovations”) in the two AR models
to be heteroscedastic. That is, we may allow ǫi ∼ independent N(0, σ2

i ) (for an SAR) or
var(Zi|Zj, j 6= i) = σ2

i (for a CAR). For these generalizations,

var(Z) =

{
σ2[(I − S)−1D(I − S′)−1] for an SAR
σ2(I −C)−1D for a CAR

where D = diag(σ2
i /σ

2).

Actually, for the CAR result above to hold, (I−C)−1D must be positive definite. Sufficient
conditions on the elements of C and D for positive definiteness are apparently not easy to
specify. A necessary (but not sufficient) condition is

cijσ
2
j = cjiσ

2
i for all i and j.
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Spatial moving average models (general form):

Zi − µi =
∑

j

Mijǫj , {ǫi} ∼ iid N(0, σ2), i = 1, . . . , n,

with Mii = 1. In matrix form, we write

Z − µ = Mǫ, ǫ ∼ Nn(0, σ2I).

• Have not received as much attention as spatial autoregressive models.

• For example,

Zu,v − µu,v = ǫu,v + ν(ǫu−1,v + ǫu+1,v + ǫu,v−1 + ǫu,v+1)

• Can generalize to allow heteroscedasticity of errors by taking ǫ ∼ Nn(0, σ2D).

Adapting geostatistical models:

• For point data, any geostatistical model for the covariance structure can be used with-
out modification.

• For areal data, covariances among responses can be obtained by integration of a geo-
statistical covariance function.
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3. Inference for Lattice Data

A. The Likelihood Function

Joint distributions under various models:

• For the SAR, Z ∼ N(µ, σ2(I − S)−1(I − S′)−1).

• For the CAR, Z ∼ N(µ, σ2(I −C)−1).

• For the MA, Z ∼ N(µ, σ2MM′).

• For geostatistical models, Z ∼ N(µ, σ2R).

Corresponding to each model is a space of parameter values within which the covariance
matrix is positive definite.

The log-likelihood function associated with Z is

L(µ, σ2,B) = −n
2

log(2πσ2) +
1

2
log |B| − 1

2σ2
(Z− µ)′B(Z− µ)

where

B =





(I − S′)(I − S) for a SAR
I − C for a CAR
(MM′)−1 for an MA
R−1 for a geostatistical model

Usually the mean is parameterized by a linear model, i.e.

µ = Xβ.
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B. Maximum Likelihood Estimation

The maximum likelihood estimators (MLEs) of β, σ2, and the parameters in B are given by

β̂ = (X′B̂X)−1X′B̂Z,

σ̂2 =
1

n
(Z − Xβ̂)′B̂(Z −Xβ̂),

and B̂ maximizes the “profile log-likelihood” function

L∗(B) = −n log(σ̂2) + log |B|.

Remarks:

• Grid search or other numerical optimization methods (e.g. Nelder-Mead simplex or
Newton-Raphson) can be used.

• Care must be taken to ensure that estimates remain in the allowable parameter space.

• Multiple modes are possible.

• Standard errors for parameter estimates have been obtained under an assumption of
“increasing-domain asymptotics.” Confidence intervals for parameters can be con-
structed using these.

C. Model Comparisons

We may want to compare how well two or more models fit the data. For example:

• CAR vs. SAR or CAR vs. MA

• First-order CAR vs. Second-order CAR

• Isotropy vs. Anisotropy

• Different neighborhood definitions

• Constant mean vs. Planar trend

Nested models can be compared using a likelihood ratio test. Suppose the nested model
imposes c independent constraints on the parameters. Let:

L1 = maximized log-likelihood for the larger model,

L0 = maximized log-likelihood for the smaller model.

Compare 2(L1 − L0) to χ2
c,α.
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Non-nested models can be compared using penalized likelihood criteria:

AIC = L(β̂, σ̂2, B̂) − # parameters

BIC = L(β̂, σ̂2, B̂) − logn

2
· (# parameters)

Larger values are associated with better-fitting models.
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4. Markov Random Field Models

The Gaussian CAR model we’ve discussed previously is a special case of a larger class of
models called Markov random field models. The word “Markov” refers to the fact that the
conditional distribution of Z(si), given {Z(sj) : j 6= i}, actually depends functionally only
on {Z(sj) : j ∈ Ni} where Ni is the set of neighbors of site i; thus, letting fi(·) represent the
full conditional probability density function of Z(si), we have

fi(z(si)|{z(sj) : j 6= i}) = fi(z(si)|{z(sj) : j ∈ Ni}).

Note that this does not say that there is no dependence marginally between Z(si) and values
of Z outside si’s neighborhood, but it does say that there is no conditional dependence on
them.

Can we specify Markov random field models other than Gaussian? For example, could
we model a random quantity that at any given site is binomial or Poisson, conditional on
the quantities at that site’s neighbors? The answer is yes, in some cases. However, the
mathematics of deriving such models, obtaining conditions for their existence, etc. are quite
difficult, so we shall not delve further into them, except to give two examples:

1. The auto-logistic model for binary data,

Pr(z(si)|{z(sj) : j 6= i}) =
exp[αiz(si) +

∑n
j=1 θijz(si)z(sj)]

1 + exp[αi +
∑n

j=1 θijz(sj)]

2. The auto-Poisson model for count data,

Pr(z(si)|{z(sj) : j 6= i}) = exp[−λi({z(sj) : j 6= i})][λi({z(sj) : j 6= i})]z(si)/z(si)!,

where

λi({z(sj) : j 6= i}) = exp[αi +
n∑

j=1

θijz(sj)].

However, this model can be used only to model negative spatial dependence.
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5. Disease Mapping

Some basics:

• The data are counts of disease cases, deaths, etc. over areas (e.g. counties).

• The attribute variables that are modeled are usually not the raw counts, but instead
are counts adjusted for the population at risk in those areas. Let Ei be the expected
count for site i, and assume that these expected counts are known. Depending on the
attribute under study, the expected counts may be the number of people, live births,
men 65 and older, etc.

• A hierarchical Bayesian approach is taken to modeling the data.

• A Gaussian Markov random field is used at one of the three stages of the hierarchy.

Two popular model formulations:

1. Hierarchical Gaussian-Gaussian model. First the count data are transformed to both
adjust for the at-risk population size and to produce variables for which the assumption
of a Gaussian distribution may be reasonable. Such transformations include the square
root transformation,

Yi ≡ (Zi/Ei)
1/2 (i = 1, . . . , n)

and the Freeman-Tukey transformation, which stabilizes the variance over a greater
range of expected counts,

Yi ≡ (Zi/Ei)
1/2 + [(Zi + 1)/Ei]

1/2 (i = 1, . . . , n).

Then, letting µi ≡ E(Yi) and µ = (µi), we suppose that

Y|µ, σ2 ∼ N(µ, σ2I),

µ|β,C,M ∼ N(Xβ, (I− C)−1M).

A fully Bayesian model is then completed by specifying prior distributions for σ2, β,
and the parameters in C and M.

2. Poisson-log Gaussian model.

Zi|λi, Ei ∼ Poisson(λiEi), (i = 1, . . . , n)

θ|β,C,M ∼ N(Xβ, (I −C)−1M)

where θ = (θi) = (log λi). The model is completed by specifying prior distributions
for β and the parameters in C and M.

Estimation and inference for both formulations are performed via Markov chain Monte Carlo
simulation methods.
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VIII. CONCEPTS AND MODELS FOR SPATIAL POINT PAT-
TERNS

1. Basic Terminology and Set-Up

A (univariate) spatial point pattern (SPP) is a finite set of points in a spatial domain (study
region) D whose locations are modelled as random variables. The term “univariate” refers
to the fact that points in the pattern are not distinguished into various types.

Statistically, a SPP is regarded as a partial realization of a (univariate) spatial point process,
which is a random mechanism for generating a countable set of points in D.

Note: For an ordinary SPP, there is no datum attached to the spatial label. Rather, the
spatial label itself can be regarded as the datum. This is in contrast to a marked point
pattern, for which one or more additional variables (e.g. species, soil moisture) are measured
at each point.

Subsequently, we refer to the points in a spatial point pattern or process as events, to dis-
tinguish them from arbitrary points in D.

We will consider only d = 2, but many things can be specialized to d = 1 or extended to
d = 3 (or higher).

Often the objects being regarded as a SPP are actually areal, i.e. they have positive area
(e.g. trees, towns). However, the relative scale of the objects and the study area usually
permits us to reasonably represent the objects as points.

The study area D may be irregularly shaped (e.g. an island) or “regular” (e.g. a rectangle).
Typically the latter case results from taking D to be a (hopefully) representative subset of
some larger region.
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The characterization of spatial pattern is often an important component of a SPP analysis.
When accompanied by more detailed quantitative analysis, it can be used, for example,
to support or refute a hypothesis about a phenomenon of interest (e.g. territoriality, social
interactions, environmental heterogeneity, allelopathy).

What do we mean by “pattern”? A working definition is as follows:

“Pattern is the characteristic of a set of points [events] which describes the lo-
cation of these points in terms of the relative distances and orientations of one
point or one group of points to another point or group of points, at one or more
scales of observation.”

2. Four-way Classification of SPPs (qualitative, single scale of observation, admittedly
simplistic):

1. Completely random (Complete spatial randomness, CSR) – No obvious structure, a
random sample from the uniform distribution on D

2. Aggregated (Clustered, Clumped) – clusters of events separated by relatively empty
areas

3. Regular (Overdispersed, Inhibitory, Superuniform) – events rather evenly spaced

4. Heterogeneous – events unevenly spaced, often difficult to distinguish from aggregation
(exception: smooth trend in point intensity)

May need to examine pattern on more than one scale. For example:

Nevertheless the 4-way classification is useful at each scale.
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3. Important Objectives of Statistical Analysis

• What is the nature of the spatial pattern? Is it aggregated, regular, or completely
random? Is there a trend or some other form of spatial heterogeneity? Is one charac-
terization sufficient for the scale of interest?

• (For sparsely sampled patterns) What is the intensity of the underlying process, i.e.,
how many trees are out there?

• Can we model the process that we envisage has generated the data? Can we do
statistical inference on the parameters of this model?

Appropriate statistical methods for addressing these questions depend on:

• the extent of sampling (completely mapped or sparsely sampled)

• the type of sampling (areal or distance sampling)

4. Areal and Distance Methods

(a) Areal methods:

• Based on a reduction of the SPP to counts of events within nonoverlapping subregions,
i.e. quadrats, of equal size

• Quadrats need not be rectangular (but usually are)

• Quadrats may or may not constitute an exhaustive partition of D.
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(b) Distance methods:

• Based on a reduction of the SPP to distances to events

• May utilize interevent distances (e.g. distance of an event to its nearest neighbor) or
point-to-event distances, or both

• May utilize distances only to nearest events, or to events beyond the nearest, or both

(c) Advantage and disadvantages

• Areal methods emphasize “global” information at the expense of “local” information;
vice versa for distance methods.

• Size and shape of quadrats are arbitrary, and different choices can give you different
answers.

• Two problems with distance methods are edge effects and overlap effects.

Edge effects: Distance measurements taken near the boundary of D will tend to be larger
than those taken in the interior, since points or events near the boundary are denied the
possibility of neighboring events outside the boundary.
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Possible remedies:

• Restrict attention to points or events in interior, surrounded by “buffer zone”

• If D is rectangular, connect opposite edges (toroidal edge correction)

• Truncate the search distance and incorporate this into the distribution of distance
measurements

Overlap effects: “Search areas” for the nearest event can overlap, resulting in dependent
measurements.

Possible remedies:

• Use sparse sampling (undesirable, however, for completely mapped patterns)

• Truncate search distances to prevent overlap
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5. Notation and Some Important Descriptive Functions and Properties

• N(B): # of events in an arbitrary region B ⊂ D

• |B|: area of B

• ds: infinitesimal region containing s ∈ D

• Intensity function (first-order):

λ(s) = lim
|ds|→0

(
E[N(ds)]

|ds|

)

• Second-order intensity function:

λ2(s, t) = lim
|ds|,|dt|→0

{
E[N(ds)N(dt)]

|ds||dt|

}

• Covariance intensity function:

C(s, t) = λ2(s, t) − λ(s)λ(t)

The intensity function is analogous to the mean function of a random field, and the covariance
intensity function is analogous to the covariance function of a random field.

Stationarity

• A process is stationary if all probability statements about it in any region B ⊂ D are
invariant under arbitrary translations of B.

• If the process is stationary, then λ(s) ≡ λ for all s, where λ, the intensity, is the mean
number of events per unit area. Also, C(s, t) = C(s − t) for all s, t ∈ D.
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Isotropy

• A process is isotropic if the invariance required for stationarity holds under rotation
as well as translation.

• If the process is isotropic, then C(s, t) = C(h), where h = [(s − t)′(s − t)]1/2, for all
s, t ∈ D.

For an isotropic (hence stationary) SPP, three additional descriptive functions are useful:

• Nearest-neighbor distance function, G(y)

Let Y denote the distance from an arbitrary event to its nearest neighbor. Then

G(y) = P (Y ≤ y).

• Point-to-nearest-event distance function, F (x)

Let X denote the distance from an arbitrary point to the nearest event to that point.
Then

F (x) = P (X ≤ x).

• The second-moment cumulative function, K(h)

K(h) =
1

λ
E(# of additional events within h of a randomly chosen event)

where λ is the intensity.
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6. Homogeneous Poisson Process (HPP, CSR)

Defining characterization:

• For every B ⊂ D, N(B) has a Poisson distribution with mean λ|B| for some λ > 0.

• For any two disjoint regions B1 and B2, N(B1) and N(B2) are independent.

Implication:

• Conditional on N(D) = n, the n events are a random sample from a uniform distribu-
tion on D.

Attributes of HPP:

• Stationary and isotropic

• Intensity = λ

• λ2(s, t) = λ2

• C(h) = 0 for h 6= 0

Computer simulation (conditioned on n events in D):

• For the common case of a unit square, merely generate 2 independent uniform ran-
dom variates, pair them up to get the coordinates of a single event, and repeat this
independently n times.

• For the case of a rectangle, simply rescale one of the coordinates.

• For an irregularly shaped D, simulate on a rectangle containing D and retain only
those events that lie within D.

• In the spatstat package of R, the rpoispp() function can be used to simulate a
homogeneous Poisson process with given intensity λ on a rectangle, which is not con-
ditioned on n events. The runifpoint() function yields a realization from the same
process, but conditioned on n events. The next page gives some realizations of an HPP,
conditioned on either 50 or 100 events on the unit square:
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Realizations of a HPP, conditioned on N = 50 (top two plots), or N = 100 (bottom two
plots):
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7. Poisson Cluster Process (PCP)

The process generates clusters according to three rules:

1. Cluster centers form a HPP with intensity ρ.

2. The #’s of events in each cluster are iid variates with mean µ.

3. Positions of events within a cluster, relative to its center, are iid ∼ pdf f(·).

Attributes:

• Stationary, with intensity λ = ρµ.

• Isotropic ⇔ f(·) is radially symmetric

• Can be shown that C(s− t) = ρE {S(S − 1)} f ∗(s− t) ≥ 0, where S is the number of
events in an arbitrary cluster and f ∗(·) is a probability density function.

Computer simulation (conditioned on n events in D):

• Straightforward if the #’s of events in each cluster are taken to be Poisson random
variates, for in that case randomly allocating the n events among the clusters effectively
conditions on N .

• The displacement of events from the cluster center may “go off the edge” if the cluster
center is near the edge of D. Some type of edge correction may be necessary.

• The rMatClust() and rThomas() functions in the spatstat package can be used to
simulate realizations of Poisson cluster processes. For rMatClust, the displacements
have uniform distributions over a circle of specified radius; for rThomas, the displace-
ments have an isotropic bivariate normal distribution with a specified common standard
deviation (and zero correlation). Their edge corrections, if any exist, are unspecified.
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Realizations of a PCP, conditioned on N = 100, with Poisson #’s of events within clusters,
with h(·) equal to the uniform density on a circle of radius 0.10, and with toroidal edge
correction:
Top two plots: ρ = 20, µ = 5
Bottom two plots: ρ = µ = 10
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8. Simple Sequential Inhibition Process (SSIP)

• First event is uniformly distributed in D.

• The distribution of each subsequent event, conditional on all previously realized events,
is uniform on that portion of D that lies no closer than δ to any previously realized
event.

Attributes:

• Stationary and isotropic

• For any desired # of events n, δ cannot be too large or else it becomes impossible to
add further events (related to maximum packing intensity). For a square study region
D, the maximum permissible value of δ is

√
2|D|

√
3

3n
.

The above describes a hard-core process, meaning that absolutely no event is allowed within
δ of any other event. Soft-core processes can also be defined, which allow events to be closer
than δ units apart, but with small probability.

Computer simulation (conditional on n events):

• Simply generate events as for a HPP, but retain only those events that are no closer
than δ to all previously generated events.

• Thus, you generally must generate many more than n events to retain n events.

• Make sure δ is not too large!

• The function rSSI() in spatstat can be used to simulate a realization from a simple
sequential inhibition process.
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Realizations of a SSIP, conditioned on N = 100:
Top two plots: δ = 0.02
Bottom two plots: δ = 0.04
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9. Inhomogeneous Poisson Process (IPP)

This is a nonstationary process with non-constant intensity function λ(s).

• Definition: For every B ⊂ D, N(B) ∼ Poisson with mean

∫

B
λ(s)ds,

and for any two disjoint regions B1 and B2, N(B1) and N(B2) are independent.

• Implication: Conditional on N(D), the events are a random sample from a continuous
distribution on D with pdf ∝ λ(s).

Remarks:

• A monotone or otherwise smooth λ(·) may be useful for accounting for global trends
in intensity.

• The IPP provides a possible framework for the incorporation of q covariates, via an
intensity function

λ(s) ≡ λ(z1(s), . . . , zq(s)).

• A Cox process is obtained by first generating a realization λ(s) from a nonnegative-
valued random field {Λ(s): s ∈ R2} and then generating events from an IPP with
intensity function λ(s).

Computer simulation (conditioned on n events in D):

1. Generate an event from the uniform distribution on D. Call its coordinate vector s.

2. Retain the event at s with probability λ(s)/λ0, where λ0 ≡ maxs∈D λ(s). This is called
“thinning.”

3. Repeat steps 1 and 2 until n events have been retained.

The function rpoispp() is flexible enough to simulate realizations from an inhomogeneous
Poisson process, but if you want the realizations to be conditioned on n events you must
write your own procedure using the runifpoint() and rthin() functions.
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Realizations of an IPP, conditioned on N = 100:
Top two plots: λ(x, y) = exp(−2x− y)
Bottom two plots: λ(x, y) = exp(−6|x− 1

2
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IX. INFERENCE FOR SPATIAL POINT PATTERNS

A. Testing Mapped Patterns for Complete Spatial Randomness

Some examples of mapped patterns:
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1. Areal Methods

Let N1, . . . , Nm denote the counts from a partitioning of D into m equally-sized quadrats.
Write N̄ =

∑
Ni/m for the sample mean of theNi’s. Then compute the “index of dispersion,”

X2 =
m∑

i=1

(Ni − N̄)2/N̄ .

If the spatial point process is HPP, then the distribution of X2 is, to a good approximation,
χ2

m−1 (provided that N̄ is not too small, say N̄ ≥ 5).

Two interpretations of X2:

1. Pearson’s chi-square statistic, since E(Ni|
∑

iNi) = N̄ under the uniformity implied by
CSR.

2. (m−1)S2

N̄
, i.e. (m− 1) times the sample variance-to-mean ratio, which makes sense since

the mean and variance of a Poisson distribution are equal.

The test is two-sided:

• X2 too large indicates aggregation or heterogeneity

• X2 too small indicates regularity

Analysis of Japanese black pines: Divide the study area into a 3×3 square grid of quadrats.
Counts and result of test are as follows:

X2
8 = 8.80, PCSR(2.733 < X2

8 < 15.51)
.
= 0.90, CSR not rejected.
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Results for other patterns:

• Redwood seedlings: X2
8 = 23.54, reject CSR.

• Cells: X2
8 = 5.57, CSR not rejected.

• Scouring rushes: X2
8 = 19.40, reject CSR.

Criticisms of areal methods:

• Insensitive to regular departures from CSR

• Conclusion can depend on quadrat size and shape, the choice of which is quite arbitrary.
For example, if we repeat the procedure for the redwood data using a 2 × 2 grid, we
obtain X2

3 = 5.56, and we do not reject CSR (P
.
= 0.14).

• Too much information is lost by reducing the pattern to areal counts

Consequently, an analysis based on quadrats of merely one size and shape is not recom-
mended for use with completely mapped patterns.

However, an analysis based on combining contiguous quadrats can be useful for characteriz-
ing pattern at different scales. That is:

1. Successively combine quadrats into 2 × 2, 4 × 4,. . . , blocks

2. Plot X2 for each block size, vs. block size

3. Peaks or troughs in the plot may be interpreted as evidence of scales of pattern (ag-
gregated or regular, respectively).

131



2. Distance Methods

(a) Clark-Evans test

• Based on the mean nearest-neighbor (NN) distance, Ȳ .

• Derivation of density of Y under CSR (ignoring edge effects):

• Ȳ too small indicates aggregation (small-scale); Ȳ too large indicates regularity (small-
scale).

• Test statistic is

CE =
Ȳ − 1

2
√

λ√
4−π
4λπn

,

where λ = n/|D|.

• Quantity in numerator subtracted from Ȳ is E(Y ) ignoring edge and overlap effects;
quantity in denominator is standard error.

• Under CSR, and if edge and overlap effects are ignored, the distribution of CE is, to
a fairly good approximation, N(0, 1).

• There are various fix-ups for edge and overlap effects. One fix-up is as follows:

E(Ȳ ) = 0.5

√
|D|
n

+ 0.0514
l(D)

n
+ 0.041

l(D)

n3/2
,

var(Ȳ ) = 0.0703
|D|
n2

+ 0.037

√
|D|
n5

l(D)

where l(D) is the length of the study region’s perimeter.

• Test tends to be powerful for detecting aggregation and regularity, weak at detecting
heterogeneity.

Examples:

• Japanese black pines — CE = −0.11, accept CSR

• Redwood seedlings — CE = −5.96, emphatically reject CSR in favor of aggregation

• Biological cells — CE = 8.33, emphatically reject CSR in favor of regularity

• Scouring rushes — CE = 1.04, accept CSR
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(b) Diggle’s Refined NN analysis

• Motivation: CE will perform poorly when there are more large and small, but fewer
intermediate, NN distances than expected under CSR but Ȳ is still about (2

√
λ)−1.

This possibility suggests that a test based on the entire empirical distribution function
(EDF) of the NN distances may be more sensitive.

• Let

Ĝ(y) =
1

n
#(Yi ≤ y).

If CSR holds, Ĝ(y) should be “close” to G(y) = 1 − exp(−λπy2) for all y > 0, and a
plot of Ĝ(y) vs. G(y) should be nearly a straight line.

• Ĝ(y) > G(y) for small y indicates aggregation (at small scale)

• Ĝ(y) < G(y) for small y indicates regularity (at small scale)

• Measures of discrepancy between Ĝ(·) and G(·):

(a) ∆G = maxy |Ĝ(y) −G(y)| (Kolmogorov-Smirnov type)

(b)
∫ {Ĝ(y) −G(y)}2 dy (Cramer-von Mises type)

• How do we judge significance? Because distribution theory for these statistics is too
difficult, we use Monte Carlo testing. That is, we compare the measure’s value for our
data to the measure’s values for s simulations (typically take s = 99 or 999) of an HPP.

• Because we don’t know the true cdf G (due to edge and overlap effects), the use of

Ḡi(y) =
1

s− 1

∑

j 6=i

Ĝj(y)

in place of G(y) is recommended. That is, take

ui = max
y

|Ĝi(y) − Ḡi(y)| (i = 1, . . . , s).

• Alternatively, Koen (1990, Biometrical Journal) has tabulated the distribution of ∆G
using simulation.
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• Rather than reducing the EDF to a single summary statistic, it may be more informa-
tive to look at a plot of the EDF. If the SPP is consistent with CSR, then a plot of Ĝ(y)
vs. G(y) should be nearly a straight line from (0, 0) to (1, 1). Departures from CSR
can be detected by means of simulation envelopes, whose upper and lower endpoints
are defined as

U(y) = max
i=1,...,s

{Ĝi(y)}, L(y) = min
i=1,...,s

{Ĝi(y)}

where s is the number of simulated HPP patterns having the same number of events
(s is usually taken to be 99), and Ĝi(·) is the NN-distance EDF for the ith simulation.
For each y > 0,

P [Ĝ(y) > U(y)] = P [Ĝ(y) < L(y)] =
1

s + 1
.

• Simulation envelopes also indicate the distance at which a deviation, if any, from CSR
occurs.
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We can do precisely the same kinds of tests using the EDF of point-to-nearest event distances
X1, . . . , Xm from m randomly or systematically placed sample points. The important thing
is that the sample points should be chosen without reference to the observed spatial point
pattern.

• Let

F̂ (x) =
1

m
#(Xi ≤ x).

If CSR holds, F̂ (x) should be close to F (x) = 1− exp(−λπx2) for all x > 0, and a plot
of F̂ (x) vs. F (x) should be nearly a straight line.

• F̂ (x) < F (x) for small x indicates aggregation (small-scale)

• F̂ (x) > F (x) for small x indicates regularity (small-scale)

• Again, Monte Carlo testing is needed to judge significance.

The use of both Ĝ(y) and F̂ (x) is what Diggle called refined NN analysis.
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(c) Ripley’s K-function approach

• Recall that the “K-function” (second-moment cumulative function) is defined as

K(h) =
1

λ
E(# of additional events within h of a randomly chosen event).

• K(h) combines distance measurement with areal counting, so we might expect it to
contain more information than the NN distances and thus provide a more sensitive
analysis.

• For a HPP, K(h) = πh2 and

L(h) ≡ h−
(
K(h)

π

)1/2

= 0.

• L(h) < 0 (K(h) > πh2) for small h indicates aggregation (small-scale)

• L(h) > 0 (K(h) < πh2) for small h indicates regularity (small-scale)

• Ripley proposes a nonparametric estimator K̂(h) of K(h) (whose exact form we will
not go into). He then suggests looking at the plot of L̂(h) ≡ h − {K̂(h)/π}1/2 vs. h
and computing a test statistic

Lmax = max
h<h0

|L̂(h)|.

The upper bound h0 is used to account for the scarcity of information about K(h) at
“large” distances.

• A Monte Carlo approach can be used to assess significance.

Examples:

• Japanese black pines — P = .41

• Redwood seedlings — P < .01

• Biological cells — P < .01

• Scouring rushes — P = .06
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3. Coordinate-based Goodness-of-Fit Methods (for rectangular D only)

Under CSR the marginal distribution of the events’ u-coordinates is uniform; likewise for the
v-coordinates. Thus, we could use standard univariate goodness-of-fit tests for uniformity
separately on each set of coordinates.

But a bivariate distribution with uniform marginals need not be uniform, so it would be
much better to use an approach that takes account of how the u- and v-coordinates vary
jointly.

Zimmerman’s Modified Cramér-von Mises test (Zimmerman, 1993, Applied Statistics)

• Test is based on the discrepancy between the bivariate EDF of the (u, v) coordinates
of events and the distribution of the same under CSR.

• Assume D is the unit square. Under CSR, F (u, v) = uv.

• Consider measuring discrepancy by Cramér-von Mises statistic

ω2 = n
∫ 1

0

∫ 1

0
{F̂ (u, v) − uv}2 du dv.

• Unfortunately, ω2 is not invariant to which corner of the square we identify as the
origin.

• So alternatively, measure discrepancy by ω̄2, the average of the four Cramér-von Mises
statistics corresponding to each of the four corners.

• Computing formula:

ω̄2 =
1

4n

n∑

i=1

n∑

i=1

(1 − |ui − uj|)(1 − |vi − vj |)

−1

2

n∑

i=1

(u2
i − ui −

1

2
)(v2

i − vi −
1

2
) +

1

9
n

• Test is two-sided; large values indicate aggregation or heterogeneity, small values indi-
cate regularity.

• Percentiles of the distribution of ω̄2 are given below; the values for n = ∞ seem valid
for use with quite small samples.
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P (ω̄2 ≤ x) n = 10 n = 20 n = ∞
.01 .049 .046 .041
.05 .061 .059 .054
.10 .069 .067 .068
.25 .090 .088 .088
.50 .121 .121 .122
.75 .169 .170 .172
.90 .229 .232 .233
.95 .273 .280 .280
.99 .372 .392 .388

Advantages of ω̄2:

• Easy to compute

• No simulation necessary

• No edge-effect or overlap-effect adjustment is necessary

• Powerful against heterogeneous alternatives

• Can test for heterogeneity (of certain kinds) in addition to testing for CSR

Limitations of ω̄2:

• Requires rectangular D

• Weak against regularity and aggregation

Examples:

• Japanese black pines — P = .67

• Redwood seedlings — P = .67

• Biological cells — P = .017

• Scouring rushes — P = .006
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4. Comparisons of Tests

Some tests for CSR are more powerful than others against specific alternatives. How powerful
a test is against a specific alternative is affected by whether the test statistic is primarily a
function of “local” or “global” characteristics.

• Tests based on distances to the nearest event emphasize local characteristics and thus
do well against aggregation and regularity, but not against intensity trends (hetero-
geneity). The Clark-Evans test and Diggle’s refined NN analysis are examples.

• Bivariate EDF tests (such as ω̄2) and areal count-based tests emphasize global char-
acteristics and are thus more powerful against large-scale heterogeneity but weaker
against aggregation and regularity.

• Tests that combine distance measurement with areal counting, like the Lmax-test based
on Ripley’s K-function, give some weight to both local and global characteristics, and
thus might be regarded as good all-purpose tests.
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B. Modeling Completely Mapped Patterns

For completely mapped patterns, testing for CSR may be only the first step of an analysis.
If CSR is rejected, we may then want to fit an alternative model (a PCP or SIP, for example)
to the data, and assess the model’s goodness-of-fit.

Methods used to fit models to patterns may be different for different models. For example,
for some models maximum likelihood estimation is possible but for others the likelihood
function is intractable or computationally burdensome to evaluate.

1.The Inhomogeneous Poisson Process (IPP)

(a) Maximum likelihood estimation

Consider a parametric family of intensity functions {λθ(x, y): θ ∈ Θ}. For this family, the
likelihood function is proportional to

l(θ;D) = {
n∏

i=1

λθ(xi, yi)} exp{−
∫

D
λθ(u, v) du dv}.

A MLE of θ is a value θ̂ that maximizes l(θ;D).

Remarks:

• Usually, the likelihood equations do not yield an explicit solution, so numerical tech-
niques are necessary (e.g. Newton-Raphson).

• A particularly useful family of intensity functions is

λ(x, y; θ) = exp{θ′z(x, y)}

where z(x, y) is a vector whose components may be values of concomitant environ-
mental variables (e.g. elevation, soil moisture), known functions of the coordinates
themselves, and/or distances to known environmental features (e.g. coastlines).

• Estimation of θ could help answer questions like “How much more likely is a particular
plant species to occur at 2000m than at 3000m?”

• Special case of HPP:
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(b) Nonparametric estimation

As an alternative to parametric estimation, nonparametric methods for multivariate density
estimation can be applied to the problem of estimating λ(·).

An edge-corrected kernel estimator for λ(x, y) is given by

λ̂h(x, y) =
1

ph(x, y)

N(A)∑

i=1

1

h2
κ




√
(x− xi)2 + (y − yi)2

h




where κ(·) is a probability density (kernel) function symmetric about the origin, h > 0 is a
bandwidth that determines the amount of smoothing, and ph(x, y) is an edge correction.

For more details on this topic, see Waller and Gotway (2004, section 5.2.5) or Silverman
(1986), Density Estimation, Chapman and Hall, New York.

Plots of kernel intensity estimates:
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2. Stationary Processes (e.g. PCP, SIP)

Let K̂(t) be a nonparametric estimator of K(t), and suppose that we wish to fit a family of
stationary models whose K-function is a known function of a parameter vector θ.

A (modified) least squares estimator for θ is obtained by minimizing

Q(θ) =
∫ t0

0
{[K̂(t)]c − [K(t; θ)]c}2 dt

where c and t0 are “tuning constants.”

Remarks:

• In practice the integral must be discretized to a sum in order to evaluate it.

• c is used to control for heterogeneity of variance of K̂(t); c = 1
4

has been suggested for
aggregated patterns, and c = 1

2
has been suggested for regular patterns.

• t0 is used as an upper limit since the pattern supplies increasingly limited information
as t increases.

• A defect of the criterion Q(θ) is that it does not take into account the strong statistical
dependence between K̂(t1) and K̂(t2) at two distances t1 and t2.

• Goodness-of-fit can be assessed by comparing the minimized value, Q(θ̂), to values
obtained by Monte Carlo simulation of the process in the family under consideration
with parameter θ̂.

• In principle we could define similar estimators of θ using F or G, but their expressions
either aren’t known or aren’t as simple as those of K for commonly used non-CSR
processes.

• Some computable K-functions:

– PCP with Poisson number of offspring per parent:

K(t) = πt2 +H(t)/ρ

where H(t) is a nonnegative-valued function.

– Static inhibition process:

K(t) = 2π exp(2πρδ2)
∫ t

δ
exp{−ρUδ(x)}x dx

• Bayesian modelling and estimation of such processes is more promising.

142



C. Testing Sparsely Sampled Patterns for Complete Spatial Randomness

Now we suppose that there were not sufficient resources to completely map the events.
Rather, we suppose that the pattern was, in some manner, sampled. The sample may be a
completely random sample (i.e. a realization of a uniform distribution on D) or systematic,
but it must be taken completely independently of the observed events.

Advantages of systematic sampling:

• More practical in the field

• Can reduce the impact of edge and overlap effects (for distance methods)

Disadvantage of systematic sampling:

• The grid spacing may coincide with periodicities in the pattern

1. Areal Methods

• In this context n1, . . . , nm are counts from m non-overlapping equally-sized quadrats
in D with relatively sparse coverage, rather than from a complete partition of D.

• Nevertheless, the test statistic and its limiting distribution under CSR are the same as
in the completely mapped context:

X2 =

∑m
i=1(ni − n̄)2

n̄
∼̇ χ2

m−1 under CSR.

• Moreover, this approach is more competitive in this context (arguably it doesn’t ignore
as much information; non-uniqueness of quadrat size and shape is not a problem).

• Generally quite powerful against aggregation and heterogeneity, but weak against reg-
ularity (as was the case for completely mapped patterns).

• Example: Lansing woods data (next page)
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2. Distance Methods

• Edge effects are still a concern; usually dealt with by sampling from an interior subre-
gion of D.

• Overlap effects are not as serious in this context provided the sampling intensity is
not too large; it is recommended that the # of samples be less than 10% of the # of
events.

• Data, if it is to be regarded as a random sample, generally cannot be NN distances, as
the act of randomly sampling a subset of events from which to measure NN distances
implies a complete enumeration of events within D.

So consider methods based on m sample point-to-nearest-event distances X1, . . . , Xm.

• Recall that each Xi has cdf F (x) = 1−exp(−λπx2) under CSR (ignoring edge effects).

• Let Ui = πX2
i be the circular search region obtained from point i. Then each Ui ∼

exponential(λ), or equivalently
2λUi ∼ χ2

2.

• So if X1, . . . , Xm are independent (as is the case if overlap effects are ignored), then

2λ
m∑

i=1

Ui ∼ χ2
2m.

• Unfortunately, an exact test for CSR cannot be based on this result since we don’t
know N (or λ) in this context.

Suppose, for the sake of argument, that we could measure NN distances Y1, . . . , Ym from a
randomly selected subset of m events. Then by the same kinds of arguments,

2λ
m∑

i=1

πY 2
i ∼ χ2

2m.

If we ignore overlap effects, 2λ
∑

i πX
2
i and 2λ

∑
i πY

2
i are independent under CSR, so the

scale-free statistic

H ≡ 2λ
∑

i πX
2
i /2m

2λ
∑

i πY
2
i /2m

=

∑
iX

2
i∑

i Y
2
i

∼ F2m,2m.

A test for CSR — Hopkins’ test — consists of comparing H to F2m,2m.

• H large ⇒ aggregation

• H small ⇒ regularity

But as noted previously, we cannot actually get a random sample of Yi’s, so Hopkins test
isn’t completely sound. Is there any alternative?
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Consider T-square sampling:

• xi = distance from sample point to nearest event

• zi = distance from that nearest event to its NN within the half-plane “perpendicular”
to the chord from the point to the nearest event

• Thus, the search area associated with Zi is a semicircle, not a circle.

• The Zi’s are not a random sample of NN distances either, but they represent a rea-
sonable attempt to deal with the problem of not being able to obtain such a random
sample.

• By an argument similar to one already given,

λπ
m∑

i=1

Z2
i ∼ χ2

2m.

• Thus we could test for CSR using

t =
2
∑

iX
2
i∑

i Z
2
i

∼ F2m,2m.

At least 20 other distance-based tests for CSR have been proposed.
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D. Estimation of Intensity (sparsely sampled data)

Assume that the spatial point pattern arises from a stationary process, so that the constant
intensity parameter λ is well-defined.

1. Quadrat methods

Consider the problem of estimating N , or equivalently λ = N/|D|, from counts n1, . . . , nm

from m sparsely placed quadrats, each of area a. An intuitively reasonable estimator of λ is

λ̃ =

∑m
i=1 ni

ma
.

Remarks:

• λ̃ is the MLE under CSR

• λ̃ is unbiased, regardless of whether CSR holds

• Under CSR, var(λ̃) = λ/ma and we can estimate this by substituting λ̃ for λ. Other-
wise, however, it is recommended that we estimate var(λ̃) by s2/ma, where s2 is the
sample variance of the ni’s.

• The MLE of N and its variance are easily obtained from these results

• Confidence intervals for λ or N are readily obtained from the Central Limit Theorem
and these variance results. Example: under CSR, an approximate 95% confidence
interval for λ is

λ̃± 1.96

√
λ̃

ma
.

147



Example: Lansing woods data

2. Distance methods

Consider the problem of estimating λ from m point-to-nearest-event distances X1, . . . , Xm.
Ignoring edge and overlap effects, πX2

i ∼ iid exponential(λ) under CSR, so the MLE under
CSR is easily found to be

λ̂ =
m

∑m
i=1 πX

2
i

.

Remarks:

• λ̂ can be interpreted as the reciprocal of the average area searched to find the nearest
event

• Under CSR, λ̂ is slightly biased; an unbiased (under CSR) estimator is (1 − 1
m

)λ̂

• An exact (under CSR) 100(1 − α)% confidence interval for λ is:

(
λ̂
χ2

α/2,2m

2m
, λ̂
χ2

1−α/2,2m

2m

)

• For aggregated patterns, λ̂ is negatively biased

• For regular patterns, λ̂ is positively biased
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Again, for the sake of argument suppose that we had available a random sample of NN
distances Y1, . . . , Ym. The MLE for λ based on these distances would be λ̄ ≡ m/

∑
i πY

2
i . It

would also be biased under departures from CSR, but in opposite directions:

• For aggregated patterns, λ̄ is positively biased

• For regular patterns, λ̄ is negatively biased

We could get a maximum likelihood estimator from T-square measurements also.

Robust estimation

• The tendency for the MLE’s based on the Xi’s and the Yi’s to be biased in opposite
directions under departures to CSR suggests that a more robust (with respect to this
bias) estimator may result from combining the two estimators.

• Such estimators are called “compound estimators.”

• Two compound estimators, based on T-square measurements (Xi, Zi), are:

λ̂D =
m
√

2

π
√

(
∑

iX
2
i )(
∑

i Z
2
i )

(Diggle, 1975, Biometrika)

λ̂B =
m2

√
2(
∑

iXi)(
∑

i Zi)
(Byth, 1982, Biometrics)

• Simulation studies show that λ̂B performs better than λ̂D.

149



Censoring (Zimmerman, 1991, Biometrika)

A final concept that can be useful for distance methods is that of censoring, i.e., imposing
an upper limit on the radius of search for the nearest event.

• May be motivated by practical considerations such as reduction of sampling effort, or
for the purpose of eliminating edge and overlap effects.

• Censored systematic sampling: Consider a square grid of spacing 2L overlaid upon D,
with the restriction that the shortest distance from any grid point to the boundary is
equal to L. Distance Xi from each point to the nearest event is measured, subject to
a maximum allowable search distance L.

• Data are m pairs of measurements (xi, δi), where

xi = min(Xi, L)

and δi is the indicator function for the set {Xi ≤ L}.

• Let Ui = πX2
i and ui = πx2

i .

• Under CSR, the (ui, δi)’s are iid with pdf

f(u, δ) = λδe−λu

• It follows that the MLE of λ is
λ̂C =

r
∑m

i=1 ui
,

where r =
∑
δi is the number of uncensored distance measurements.
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X. ANALYSIS OF MULTIVARIATE POINT PATTERNS

A. Terminology and Basic Concepts

So far we have considered situations in which the events are members of a single population.
Now we consider multivariate spatial point patterns, for which each event can be classified
into one of a finite number of categories. We shall consider only the bivariate case, where
events are of only two types, e.g., oaks and maples, or adults and juveniles. We shall refer
to the two types generically as Type 1 and Type 2.

There are four aspects of a bivariate pattern that may be of interest:

• The pattern of Type 1 events only

• The pattern of Type 2 events only

• The combined pattern of intermingled Type 1 and Type 2 events

• The interrelation between Type 1 and Type 2 events

The first three of these refer to a single point pattern, so we could use methods for the
analysis of univariate point patterns to classify and model them. If we consider the four-way
classification given previously for each type of event, there are numerous possible combina-
tions of the first three aspects.

The fourth aspect, however, is something different. We can broadly classify it into three pos-
sibilities, according to how the locations of Type 1 events are associated with the locations
of Type 2 events:

• Attraction (positive association, due e.g. to similar responses to environmental het-
erogeneity or to a mutualistic relationship)

• Independence (no association)

• Repulsion (negative association, due e.g. to complementary responses to environmental
heterogeneity or to competition)

We shall consider methods for addressing this fourth aspect.
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Examples: Lansing Woods data and bramble canes data
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B. Models and Important Theoretical Quantities

Models

Models for bivariate point processes have typically been constructed by linking univariate
models independently or with either positive or negative dependence. We briefly describe
just two:

1. Bivariate Poisson process

• Each component process is an HPP

• Independence model is simply a superposition of the two HPP’s

• Positive dependence can be built in by, for example, displacing each Type 2
event randomly about a Type 1 event, according to a radially symmetric bivariate
distribution with mode (0,0) [Type 1 event = Parent, Type 2 event = Offspring].

2. Mutual inhibition process

• Events of each type are generated in an alternating sequence over D.

• At each stage, the next event of a given type is realized from a uniform distribution
over that portion of D that is at least distance δ away from any previously realized
events of the opposite type.
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Theoretical Quantities

Consider stationary, isotropic, and orderly processes only (both for the component processes
separately and for their superposition). Then we have:

• Intensities: λ1, λ2 (defined as before, but for each process)

• Second-order intensity function:

λij(u) = lim
|dx||dy|→0

{
E[Ni(dx)Nj(dy)]

|dx||dy|

}

where u =
√

(x − y)′(x − y).

• Note that λ12(u) = λ21(u).

• Second-moment cumulative functions:

Kij(t) =
1

λj

E[# of Type j events within t of an arbitrary Type i event]

– K12(t) “large” ⇒ Positive association of Type 2 with Type 1

– K12(t) “small” ⇒ Negative association of Type 2 with Type 1

– Note that K12(t) = K21(t).

• Cdf’s:

Gij(y) = cdf of distance to nearest Type j event

from an arbitrary Type i event

Fj(x) = cdf of distance to nearest Type j event

from an arbitrary point

• Note that G12(y) 6= G21(y) and F1(x) 6= F2(x), in general.

Under independence (but regardless of whether CSR holds):

• K12(t) = K21(t) = πt2 (the first equality holds without independence, as noted above)

• F1(x) = G21(x)

• F2(x) = G12(x)
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C. Tests for Independence

1. Quadrat methods

Suppose we have quadrat count data {(ni1, ni2) : i = 1, . . . , m} where nij is the number
of Type j events in quadrat i. The quadrats may constitute a complete partition of D or
merely a sparse sample.

(a) Presence-Absence table [Greig-Smith (1964), Quantitative Plant Ecology]

Test for independence using

X2 =
m(|ad− bc| − 1

2
m)2

(a+ b)(c + d)(a+ c)(b+ d)
.

For large m, and under independence, X2 ∼̇χ2
1.

Test is two-sided, but we determine significance using only the right tail of the χ2 distribution.

Potential problem: If the two types are present over only a small proportion of D, then the
(absent, absent) cell may dominate and lead to a spurious conclusion of attraction.
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(b) Correlation coefficient, r, between ni1’s and ni2’s.

• Motivated by the fact that the presence-absence table represents a severe reduction of
the data — we ought to be able to make better use of quadrat counts.

• r > 0 ⇒ Attraction

• r < 0 ⇒ Repulsion

• We can test for significance using a standard test for zero correlation, i.e., compare
t ≡ r

√
m−2√
1−r2

∼ tm−2.

• The test can be affected by a lack of independence between neighboring quadrat counts.

• The problem of (0, 0)-dominance occurs here as well.

2. Distance methods

(a) Nearest-neighbor table [Pielou (1961), Journal of Ecology, 49, pp. 255-269]

The patterns are reduced by determining the type of the NN from each of m events (some
Type 1, others Type 2), and constructing the following 2 × 2 table.

Test for independence using an X2 statistic given by the same formula as the X2 statistic
for the quadrat presence-absence table. Same asymptotic reference distribution too (χ2

1).

Remarks:

• Can be used for completely mapped or sparsely sampled data

• Should only be used when each of the two types satisfies CSR, at least approximately.
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(b) Comparison of point-to-nearest-event and NN distance distributions [Goodall (1965),
Journal of Ecology, 53, pp. 197-210]

Based on the idea that under independence,

F1(x) = G21(x) and F2(x) = G12(x).

Can quantify the discrepancy between the two distributions in either pair in various ways:

• Compare sample means of the distances, either using a t-test or a nonparametric
alternative (Mann-Whitney two-sample rank sum test).

• Use a two-sample Kolmogorov-Smirnov type of statistic

max
x

|F̂j(x) − Ĝij(x)| for i = 1, 2; j = 3 − i.

Note: Goodall gives some approximate 5% and 1% critical values for the test. Alter-
natively, the method of toroidal shifts could be used (see next page).

(c) Correlation of paired point-to-nearest-event distances [Diggle and Cox (1983), Int. Stat.
Rev., 51, pp. 11-23]

Based on data {(Xi1, Xi2): i = 1, . . . , m}, the distances from arbitrary points in D to the
nearest events of each type. Under independence, the correlation between the Xi1’s and the
Xi2’s is zero.

Remarks:

• Positive correlation ⇒ attraction

• Negative correlation ⇒ repulsion

• The distances are not normally distributed so for small or moderate m, the use of
Spearman’s rank correlation or Kendall’s tau is advised.
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(d) Use of bivariate K-functions [Lotwick and Silverman (1982), Journal of the Royal Sta-
tistical Society-B, 44, pp. 406-413]

Recall that K12(t) = K21(t) = πt2 if the two processes are independent. Thus, we could base
a test for independence on a plot of

L̂12(t) =

√
K̂12(t)

π
− t

versus t, or on, say, the maximum of |L̂12(t)| for t ≤ t0.

Remarks:

• L̂12(t) < 0 ⇒ repulsion at that t

• L̂12(t) > 0 ⇒ attraction at that t

• An estimator of K12(t) is proposed by Lotwick and Silverman.

• To assess significance, use the method of toroidal shifts, a Monte Carlo testing approach
which preserves the observed patterns of each type separately. Realizations of “new”
patterns are obtained by perturbing each event of one type (but not the other) a random
amount (∆x,∆y), using toroidal edge correction if necessary. (Assumes rectangular
D).

1. Hold the Type 1 pattern in place, but shift the entire Type 2 pattern from its
original locations by a random amount (∆x,∆y), using toroidal edge correction
if necessary.

2. Recalculate L̂12(t).

3. Repeat steps 1 and 2 a large number, say s, of times to get a simulation envelope
or empirical distribution for assessing significance.

• See next page for an example, with code.

3. Comparisons of Tests

No thorough power studies have been done (a good research area!).
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Splancs code within R for implementing the method of toroidal shifts on the Lansing Woods
hickory and maple data:

hick <- lansing[lansing$marks=="hickory",]

hick <- as.points(cbind(hick$x,hick$y))

maple <- lansing[lansing$marks=="maple",]

maple <- as.points(cbind(maple$x,maple$y))

r <- 1:70/100

poly <- cbind(c(0,0,1,1),c(0,1,1,0))

myK12 <- k12hat(hick,maple,poly,r)

plot(r,sqrt(myK12/pi)-r,xlim=c(0,0.7),ylim=c(-.1,.1))

my12env <- Kenv.tor(hick,maple,poly,99,r)

lines(r,sqrt(my12env$upper/pi)-r)

lines(r,sqrt(my12env$lower/pi)-r)

dev.print()
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D. Tests for Random Labelling

Random labelling versus independence:

• Random labelling hypothesis

– Given the “population” of N1 +N2 events of two types, the N1 Type 1 events are
a random sample from this population.

– Conceptual framework: locations are determined by a univariate point process,
and then types are determined by a second random mechanism that operates
independently of the point process.

– Biological example: Colonization by seedlings of a single species, followed by
transmission of disease between seedlings, with the end result that some seedlings
are diseased and some are not.

• Independence

– Events of Type 2 are located independently of events of Type 1.

– Conceptual framework: locations of two univariate point processes are determined
completely independent of one another.

– Biological example: Simultaneous colonization of a region by two different plant
species.

Random labelling and independence are not equivalent, in general:

• Random labelling does not imply independence; for example,

• Independence does not imply random labelling; for example,

• Random labelling plus two HPP’s ⇔ Independence plus two HPP’s
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Key Result: Under random labelling,

K11(t) = K22(t) = K12(t)

Measures of departure from (i.e. test statistics for) the random labelling hypothesis:

• T = # of Type 1 events which have other Type 1 events as their NN’s (Cuzick and
Edwards, 1990, JRSS-B, 52, 73-104)

• D̂(t) = K̂11(t)− K̂22(t) or D̂ =
∑m

q=1 D̂(tq)/
√

var(D̂(tq)) (Diggle and Chetwynd, 1991,
Biometrics, 47, 1155-1163), where t1, . . . , tq are regularly spaced distances.

• D̂1(t) = K̂11(t)− K̂12(t) or D̂2(t) = K̂22(t)− K̂12(t) (Dixon, 1994, unpublished report)

• Others, e.g. K̂11(t)/K̂22(t), D̂(t)/K̂22(t), . . .

• To evaluate significance, can use a normal approximation for numerical quantities like
T and D̂, making use of formulas for means and variances of these quantities supplied
by the appropriate authors. Alternatively, can use a Monte Carlo approach, in which
each simulated pattern is obtained by permuting event labels completely at random.

• An example, with code, is given on the following page.
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Splancs code within S+ for implementing a Monte Carlo test for random labelling on the
Lansing Woods hickory and maple data:

unitsquare <- spoints(c(0,0,1,0,1,1,0,1))

hick.khat <- khat(hick.spp,unitsquare,seq(0,1,.01))

maple.khat <- khat(maple.spp,unitsquare,seq(0,1,.01))

khat.diff <- hick.khat-maple.khat

plot(seq(0,1,.01),khat.diff,xlab="distance",ylab="K 11 - K 22",type="l")

diff.lab <- Kenv.label(hick.spp,maple.spp,unitsquare,nsim=99,seq(0,1,.01))

lines(seq(0,1,.01),diff.lab$upper,lty=2)

lines(seq(0,1,.01),diff.lab$lower,lty=2)
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E. Three Other Important Hypothesis Tests

1. Testing for spatial clustering of diseases

• Background population of interest typically has inhomogeneous intensity, so the
pattern will inevitably be clustered within the study area, and the methods we’ve
learned so far will not be directly applicable.

• Example: North Humberside leukemia data. Data consist of 62 cases of childhood
leukemia and lymphoma in North Humberside, UK from 1974-1986; and 141
controls selected at random from entries on the birth register for January 7 or
June 7 for each of the years 1974-1986.
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• One approach to testing for clustering: First ascertain locations of “cases” (Type
1 events); then randomly sample “controls” (Type 2 events) from the population
of interest. From each case, determine whether the nearest other event is a case
or a control. Let T = # of cases which have other cases as their NN’s. Evaluate
significance using permutation distribution of T . If T is too “large,” then there is
spatial clustering of the disease over and above that attributable to environmental
inhomogeneity.

• More power to detect larger clusters might result if we measure not only NN’s
but also second NN’s, third NN’s, etc. I.e., T1 ≡ T , T2 = # of cases which have
other cases as their second NN’s, etc.

• For the North Humberside data, the permutation-based p-values for T1, T2, and
T3 were 0.055, 0.006, and 0.003, respectively.

2. Testing for clusters, i.e. testing whether a specific subset of events are clustered (rather
than testing whether events generally tend to occur near other events)

• A very popular approach for testing for clusters is based on the scan statistic.

• Move a circular window across the study area and compare the ratio of cases to
controls inside the circle to that observed outside the window.

• In order to capture different potential cluster sizes, we consider a range of radii
for the circles (perhaps ranging from the minimum interevent distance to half the
length of the study region).

• The test statistic is the maximized case/control ratio, and the cluster correspond-
ing to this ratio is the “most likely cluster.”

• A permutation-based approach can be used to assess significance.

• A software package, SaTScan, is available for this kind of analysis.

• For the North Humberside data, the observed case/control ratio (over a range of
cluster sizes) is 3.274, i.e. over a tripling of disease risk. (See next page for the
locations of the corresponding two most likely clusters.) However, based on 999
random permutations, the p-value is only 0.691. Thus, approximately 69% of the
permutations resulted in most likely clusters with higher case/control ratios than
that seen in the original data. Thus, the most likely cluster is not a statistically
unusual cluster of cases.

• How do we reconcile this result with the results from testing for clustering?
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North Humberside data, with most likely clusters indicated:
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3. Testing for clustering around prespecified points (nuclear reactors, toxic waste dumps,
etc.)

• One simple approach is to measure the distance from each of the cases to the
nearest putative hazard site, measure the distance from each of the same number
of controls (selected randomly from the at-risk population) to the nearest putative
hazard site, and compare the mean distance for cases to the mean distance for
controls.
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