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Abstract

Spatial prediction with the presence of spatially dense ancillary variables has attracted research in pedometrics. While soil survey and analysis
of soil properties are still expensive and time consuming, the secondary data can be made available on a dense grid for the whole area of interest.
The main aim of using the ancillary data is to enhance prediction of soil properties by making use of the ancillary variables as covariates. Methods
that can be used for this purpose are kriging with external drift, cokriging, regression kriging, and REML-EBLUP (Residual Maximum
Likelihood-Empirical Best Linear Unbiased Predictor). Regression kriging is a sub-optimal method that has been utilised extensively because it is
easy to use and has been shown empirically to perform as well as other methods. A statically sound method is REML-EBLUP. This paper
examines the use of REML-EBLUP in combination with the Matérn covariance function for spatial prediction of soil properties. Methods for
estimating parameters of the Matérn variogram using REML, and prediction with EBLUP are described. The prediction capability of REML-
EBLUP, regression kriging, and ordinary kriging is compared for four datasets. Results show that although REML-EBLUP generally improves the
prediction, the improvement is small compared with regression kriging. Thus, for practical applications regression kriging appears to be a robust
method. REML-EBLUP is useful when the trend is strong, and the number of observations is small (b200). We concluded that improvement in the
prediction of soil properties does not rely on more sophisticated statistical methods, but rather on gathering more useful and higher quality data.
© 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Spatial prediction of soil properties has become a common
topic in soil science research. This is enhanced by the
advancement of technology that enabled collection of on-the-
go proximal sensors and also remotely-sensed imagery for use
in precision agriculture and digital soil mapping. While soil
survey and analysis of soil properties are still expensive and
time consuming, the ancillary or secondary data can be made
available on a dense grid for the whole area of interest. These
data can be from proximal or remote sensing, and digital ele-
vation models. Goovaerts (1997) called this exhaustive second-
ary data. Spatial prediction with the presence of spatially-dense
ancillary variables has attracted research in pedometrics. The
aims of using the ancillary data are to remove the trend to
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achieve spatial stationarity, and more importantly to enhance
prediction of soil properties by making use of the ancillary
variables as covariates.

The trend in spatial data can be modelled either by a regional
geographic trend (internal drift), or ancillary information
(external drift). Modelling the trend also allows us to gain
knowledge on the processes that gave rise to the spatial
variation and improve predictions. The model for prediction of
variable z at location x can be written as:

zðxÞ¼f ðxÞþeðxÞ ð1Þ
where x is the vector of spatial coordinates, observation z, f (.) is
the trend function, and ε is the residuals with a mean of zero and
covariance structure K. The trend function f (.) is usually
modelled as linear function of ancillary variables. Most research
in pedometrics attempts to use the ancillary information as
covariates, these covariates can be related to soil forming or the
scorpan factors (McBratney et al., 2003).
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Methods for spatial prediction in the presence of exhaustive
ancillary information include:

(a) universal kriging or krigingwith internal drift, UK (Burgess
and Webster, 1980),

(b) kriging with external drift, KED (Goovaerts, 1997),
(c) regression kriging, RK (Odeh et al., 1994, 1995; Hengl

et al., 2004),
(d) collocated cokriging, CC (Chilès and Delfiner, 1999).

Universal kriging applied to a special situation where the
exhaustive information is provided solely by spatial position.
Kriging with external drift is referred to the drift provided from
external sources, e.g. ancillary or secondary information. Both
UK and KED have the same formulation, the trend and residuals
are modelled in a system.

Regression kriging (RK) was first coined by Odeh et al.
(1994) referring to methods that combined regression using
ancillary variables and kriging. It involves performing regres-
sion between the target variable and ancillary variables, calcu-
lating residuals of the regression, and combining them with
kriging. Odeh et al. (1994, 1995) defined three types of RK:

– RK type A (Odeh et al., 1994), called “kriging combined
with regression” by Knotters et al. (1995), where regression
is performed, and followed by kriging of regressed values.

– RK type B (Odeh et al., 1994), called “kriging with a guess
field” by Ahmed and De Marsily (1987), which involves
regression, and calculating the residuals. This is followed by
kriging of the regression predicted values and the residuals
separately, and summing both values together to obtain the
final prediction.

– RK type C (Odeh et al., 1995), similar to type B, but only
kriging of the residuals, and summing predicted values from
regression and residuals from kriging to obtain the final
prediction.

Hengl et al. (2004) defined RK as a generalised least squares
model. In this paper we refer regression kriging (RK) as type C
of Odeh et al. (1995), where the trend function is modelled
using ordinary least squares (OLS), and ordinary kriging is
performed on the residuals of the trend function. This is a ‘short
cut’ sub-optimal version, which is also called kriging after
detrending. The assumption is that where the trend function and
its residuals are uncorrelated, and they can be modelled inde-
pendently (Odeh et al., 1994).

McBratney et al. (2000) extended the form of f (.) in Eq. (1)
not only to linear models but various nonlinear mathematical
models such as generalised additive models, regression tree and
neural networks. McBratney and Walvoort (2001) proposed
Generalised Linear Model Kriging, where the trend can be
defined as a generalised linear model.

Rivoirard (2002) discussed the use of kriging with external
drift and cokriging. Universal kriging, KED, and kriging of the
residuals are optimal when the residuals are orthogonal or
uncorrelated to the ancillary variables, otherwise coregionalisa-
tion cokriging is theoretically better. However the formulation
of cokriging in the presence of exhaustive ancillary variables
may be awkward, and requires lots of parameters and heavy
computation. Further, Rivoirard (2002) suggested that KED or
UK should be used when the trend form is known but the
parameters are unknown, and kriging of the residuals is used
when the form and parameters of the trend is known. This is the
core of the matter, the estimation of the parameters of the model
and the covariance structure of the residuals. There is an
impasse: the residuals can only be obtained after the trend is
determined, and parameters of the trend depend on the
residuals.

Regression kriging appears to be the most popular method
used by pedometricians because it is easy to use (e.g. Carré and
Girard, 2002; Finke et al., 2004; Baxter and Oliver, 2005;
Herbst et al., 2006; Simbahan et al., 2006). Furthermore, many
papers (Odeh et al., 1995; Herbst et al., 2005; Simbahan et al.,
2005) have reported good prediction, outperforming regression,
ordinary kriging, and cokriging. However Cressie (1993) and
Lark et al. (2006) pointed out that estimating the variogram of
the residuals with RK is theoretically biased. Lark et al. (2006)
demonstrated with simulations that when variogram of the
residuals were estimated using RK there is a bias at long lags.
This has consequences that the overall variability is under-
estimated and the spatial structure cannot be estimated correctly.
Thus Lark et al. (2006) advocated pedometricians to use a
statistically sound method called REML-EBLUP. Residual
maximum likelihood method (REML) estimates parameters of
the covariance function and trend model directly from the data.
Subsequently the estimated parameters are used for spatial
prediction called EBLUP, E refers to empirical or estimated, and
BLUP is the best linear unbiased predictor.

There is still no formal comparison between REML-EBLUP
and other methods for predicting soil properties. In this paper
we explore the use of REML-EBLUP in combination with the
Matérn covariance function, which was suggested by Minasny
and McBratney (2005). The aims of this paper are to examine
the use of EBLUP, and to answer the question whether using a
more statistically sound method can improve the prediction of
soil properties. We examine the prediction power of EBLUP by
comparing it with ordinary kriging and regression kriging using
four different examples.

2. Theory

2.1. BLUP

Best Linear Unbiased Prediction (BLUP) arises from a
statistical theory (Robinson, 1991), a full discussion on the
theoretical aspects is given in Lark et al. (2006). Following the
main equations are introduced. The general linear spatial model
for a random field z is:

zðxÞ ¼ mðxÞTβþ eðxÞ ð2Þ

where x is the vector of spatial coordinates, m(x) is the design
matrix of the trend function [m1,m2,…mp], β is the parameter
vector (size p×1) for the trend, and ε is the residuals with a
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mean of zero and covariance structure K. We observe soil
properties z at location x whose n observations form z=[z(x1),
…,z(xn)]

T and we wish to predict z at unsampled location x0, ifβ
is known then the solution is:

zðx0Þ ¼ mðx0ÞTβþ kTK�1ðz�MβÞ ð3Þ
where M is the (n×p) design matrix M=[m(x1)…m(xn)]

T,
K=cov(z,zT), and k=cov{z,z(x0)}. If the covariance function
forming K is known, then vector β can be estimated using
generalised least squares:

β̂ ¼ ðMTK�1MÞ�1MTK�1z; ð4Þ
and β̂can replace β in Eq. (3):

zðx0Þ ¼ mðx0ÞTβ̂þ kTK�1ðz�Mβ̂Þ: ð5Þ
The variance of the prediction is:

r2z ¼ k0 � kTK�1cþ dT ðMTK�1MÞ�1d ð6Þ
where k0=K(x0,x0) and d=m(x0) − MTK−1k.

Stein (1999) showed that Eq. (5) is exactly the same as the
formulation of universal kriging (Burgess and Webster, 1980):

K M
MT O

� �
l
y

� �
¼ k

mðx0Þ
� �

ð7Þ

where O is a zero matrix, and the predictor is:

Zðx0Þ ¼ lTZ ð8Þ
When m(x)=1, Eq. (7) refers to ordinary kriging, and when M
contains the trend model, it is universal kriging or kriging with
external drift.

The formulation of (5) as an alternative to the standard
kriging form (7) was also proposed by Davis and Grivet (1984).
This form takes advantage of the explicit use of the symmetric
positive definite form ofK. The inverse ofK can be achieved in
a more efficient and stable computation using Cholesky fac-
torisation. Since K is positive definite, it can be factorized into:

K ¼ LLT : ð9Þ
with L a lower triangular matrix with positive diagonal entries.
The inverse of K can be found by:

K�1 ¼ L�1ðL�1ÞT ð10Þ

In the case where matrix K is not positive definite (as some-
times found in a smooth spatial process with no nugget effect, e.g.
the Gaussian variogram model) the modified Cholesky factorisa-
tion algorithm of Gill et al. (1981) can be applied. This involves
adding a diagonal term E to K to enforce positive-definiteness:

K þ E ¼ LTL: ð11Þ

This approach attempts to minimise E, thus disturbing K as
little as possible. The modified Cholesky factorisation is widely
used in optimisation algorithms (Gill et al., 1981).
Usually the covariance structure K is represented as a covari-
ance function with parameter vector θ. The problem for the
parameter estimation is that the covariance structure K is usually
unknown a priori, and K refers to residuals, which can only be
obtained after fitting the trend; however fromEq. (4) we see thatK
is required to fit the trend. Hence the impasse mentioned above.
Thus we need a method that can predict the parameters accurately
and unbiasedly.

Methods for estimating θ and β include:
(1) The crude, sub-optimal approach — regression kriging

(RK).
This approach assumes that the deterministic (trend) part and

the random error can be modelled independently. First a trend
function is formulated:

z ¼ Mβþ r; ð12Þ
where r is (n×1) column vector of residuals. Parameter vector
β is estimated using ordinary least-squares:

β̂ ¼ ðMTMÞ�1MTz: ð13Þ
Replacing β with β̂ in Eq. (12) gives us the prediction for z

̂z ¼ Mβ̂; ð14Þ
the prediction variance is given by (Agterberg, 1974):

r20 ¼ mðx0ÞT ðMTMÞ�1mðx0Þr2E ð15Þ
where σE

2 is the residuals variance, estimated as SSR/(n-p-1)
with SSR=sum of squared of the residuals. The second step in
RK is calculating the semivariance of the residuals using the
method of moments and θ is estimated by fitting a variogram
function to the empirical variogram. The residuals are then
predicted for the whole area using ordinary kriging. The final
prediction is obtained by adding the OLS predicted value with
kriging interpolated residuals:

̂zðxÞ ¼ mðxÞTβ̂þ rðxÞ ð16Þ
The prediction variance is simply the sum of variance of the

prediction according to OLS (σo
2) and prediction variance of the

residuals by kriging (σr
2):

r2 ¼ r2o þ r2r ð17Þ
(2) Maximum likelihood (ML) (Mardia and Marshall, 1984;

Hengl et al., 2004).
In the context of generalised least squares, an initial β is

estimated by ordinary least-squares (Eq. (13)), then θ is
estimated by maximising the log-likelihood:

S θ;βð Þ ¼ � n
2
log 2pð Þ� 1

2
logjKj� 1

2
ðz�MβÞTK�1 z�Mβð Þ

ð18Þ
β is then re-estimated using (4), and this process is then

repeated to get a stable solution.
(3) Restricted maximum likelihood (REML) (Kitanidis,

1983; Stein, 1999).
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This is a more robust method to estimate θ and it does not
depend on correct estimates of β. REML is due to Patterson and
Thompson (1971) and Kitanidis (1983) was the first to use it for
estimating spatial covariance functions. First, it transforms the
data z into stationary data increments, y:

y ¼ Tz ð19Þ
The transformation matrix T is selected so that the trends

defined in M can be filtered out:

T ¼ I�MðMTMÞ�1MT ð20Þ
where I is the identity matrix. θ is then estimated by maximizing
the log-likelihood function:

L h; yð Þ¼� n� p
2

log 2pð Þ� 1
2
logjKj � 1

2
logjWj � 1

2
yTK�1Qy

ð21Þ
where W=MTK−1M and Q= I−MW−1MTK−1.

REML appears to be the most statistically sound method, and
recently has gained much attention in pedometrics (Lark and
Cullis, 2004) and also has been used for analysis of spatial crop
yield data (Hong et al., 2005).

The use of REML for estimating parameters of a spatial
covariance function is not new; it was first proposed byKitanidis
(1983), and Kitanidis and Lane (1985). In pedometrics, Laslett
and McBratney (1990) used REML to estimate the variogram of
soil pH. Knotters et al. (1995) used REML to estimate param-
eters of the covariance function for kriging with external drift.

The steps for prediction using BLUP are summarised as:

– define the trend function and design matrix M.
– estimate θ with REML by maximizing the log-likelihood
function (Eq. (21))

– estimate β using Eq. (4) with θ̂.
– apply spatial prediction to unknown sites using Eq. (5).

This is called REML-EBLUP (Stein, 1999). The “E” refers
to empirical or estimated because θ̂ is estimator of θ.

2.2. REML estimation of the variogram

Minasny and McBratney (2005) suggested the Matérn
function as a general soil variation model for K:

Kij ¼ c0dij þ c1
1

2m�1CðmÞ
h
r

� �m

Km
h
r

� �� �
ð22Þ

with parameter vector θ=[c0, c1,r,ν]. δij is the Kronecker delta,
c0 is the nugget variance, and c0+c1 is the sill variance, h is the
separation distance, Kν is a modified Bessel function of
the second kind of order ν, Γ is the gamma function, r is the
distance or ‘range’ parameter and ν is the ‘smoothness’ param-
eter which allows great flexibility for modelling the local spatial
covariance. When ν is small (ν→0) it implies that the spatial
process is rough (rapid changes in variation at small lags), and
when it is large (ν→∞) that the process is smooth (smooth
changes in variation at small lags). Minasny and McBratney
(2005) showed that the Matérn function can describe the spatial
structure of various soil properties.

Because the model (Eq. (22)) has 4 parameters, optimisation
algorithms can easily get stuck in local minima. Thus we used
the profile likelihood method for the REML estimation of θ
(McCullagh and Clifford, 2006). The procedure is as follows:

• Choose a set of values for ν and r.
• For each combination of ν and r, maximise the log-likelihood
by estimating [c0, c1] using an optimisation algorithm.

• Plot the log-likelihood L, values as a function of ν and r, and
find a combination of ν and r that has largest L.

3. Methods

3.1. Datasets

An application of REML-EBLUP for spatial prediction of
soil properties using the Matérn covariance function is given.

3.1.1. (1) Zn concentration along the Meuse River
This famous example comes from Burrough and McDonnell

(1998) where topsoil zinc concentration along the river Meuse,
the Netherlands was observed. This dataset shows a strong trend
and it is expected to be a good application for BLUP. The data
are obtained from the internet at Dr. David Rossiter's website:
http://www.itc.nl/personal/rossiter/teach/lecnotes.html#l6. 155
observations were taken from the top 0–20 cm of alluvial
soils in a 5 km×2 km part of the floodplain of the River Meuse,
near the village of Stein in the south of the Netherlands. The
average distance between sampling points is around 100 m
where each ‘point’ datum refers to a support of 10 m×10 m, the
area in which bulked samples were collected. The data shows a
strong trend of zinc concentration decreasing with increasing
distance from the river. Pebesma and Heuvelink (1999)
suggested a linear relation between the log of zinc concentration
and the square root of distance to the river d:

logðzðxÞÞ ¼ β0 þ β1
ffiffiffiffiffiffiffiffiffi
dðxÞ

p
þ eðxÞ: ð23Þ

3.1.2. (2) Soil pH data
Top soil pH from a survey in the Pokolbin area of the lower

Hunter Valley, New South Wales, where 399 samples of soil
were taken at a depth of 0–10 cm by Latin hypercube sampling
of the ancillary data (Minasny and McBratney, 2006). The
average separation distance between samples is 200 m (Fig. 1).
Soil pH were measured using CaCl2 in a 1:5 soil to water ratio.
The purpose is to map the topsoil pH over the area. The data is
randomly split into 250 observations as a training or prediction
set and 149 observations as a validation set. Land-use in the area
is classified using the available Landsat TM satellite images.
Analysis of variance shows that areas with viticulture are
statistically significant 0.5 pH unit larger. Further analysis of the
data shows that there is a decreasing trend from west to east.
Thus, the trend model is:

zðxÞ ¼ β0 þ β1 Eastingþ β2 Viticultureþ eðxÞ ð24Þ

http://www.itc.nl/personal/rossiter/teach/lecnotes.html#l6


Fig. 1. Topsoil pH data in the Hunter Valley.
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Where Easting refers to the Easting coordinates (in m) and
Viticulture is an index of 1 and 0 indicating whether the land-
use is viticulture or some other.

3.1.3. (3) Top soil clay content in the Edgeroi
These are data on top soil (0–10 cm) clay content from the

Edgeroi area, NSW, Australia. The soil dataset consists of 341
soil observations, of which 210 are arranged on a systematic,
equilateral triangular grid with approximately 2.8 km spacing
Fig. 2. Map of nitrogen fertilizer application rate (left) and th
between sites, and 131 are distributed more irregularly or on
transects. Details of this area can be found in Minasny et al.
(2006). The purpose is the creation of a digital soil map using
soil environmental variables (McBratney et al., 2003):

zðxÞ ¼ f ðs; o; rÞ þ eðxÞ ð25Þ

where s refers to soil properties, o refers to organisms and r refers
to relief.
e three management zones (right). After Stewart (2003).



Fig. 3. Profile log-likelihood of the log(Zn) data: (a) contour plot of REML log-
likelihood L as a function of distance parameter r and smoothness ν; (b) Log-
likelihood L as a function of r at selected values of ν.
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The environmental factors representing the s, o, r factors
are: gamma radiometrics, Landsat TM images, a digital
elevation model and derived terrain attributes. The ratio of the
Landsat TM bands which can enhance soil and vegetation
attributes were calculated, i.e. the clay index, which is
calculated from Landsat TM band 5/ band 7, this ratio aims
to separate land and water, since soils exhibit strong ab-
sorption in the band 7 (2.08–2.35 μm) and high reflectance in
band 5 (1.55–1.75 μm). The data are divided into a pre-
diction set of 200 observations, and a validation set of 141
observations.

3.1.4. (4) Nitrogen fertiliser field experiment
This involves a field-scale fertiliser experiment (Stewart,

2003). A field of 83 hectares in NSW, Australia was divided
into 3 management zones based on previous yield maps and
electromagnetic induction survey using the k-means clustering
algorithm. Nitrogen fertiliser was applied as anhydrous
ammonia with a fertiliser application map shown in Fig. 2.
The field was divided into blocks of 48 m×70 m, and at each
block N fertiliser at different rates were applied. The rates were
determined based on treatments of uniform application,
continuous fertilisation based on soil analysis, and management
zones. Cotton lint yield was collected using a yield monitor on a
cotton harvester, and the average yield for each N level within a
block was calculated, which gives 248 observations. Thus each
observation represents the yield averaged over an area of
3360 m2. The data is normally distributed with a mean of
1.6 Mg/ha and variance of 0.11 (Mg/ha)2. The purpose is to
obtain the optimal N application rate for each of the manage-
ment zones. A quadratic response function was fitted to the N
application rate, the model is:

zðxÞ ¼
If Zone ¼ 1Ya0 þ a1Rateþ a2Rate2

If Zone ¼ 2Yβ0 þ β1Rateþ β2Rate
2 þ eðxÞ

If Zone ¼ 3Yv0 þ v1Rateþ v2Rate
2

8<
: ð26Þ

where Rate is the applied N fertiliser rate (kg ha−1).

3.2. Methods of comparison

To see the benefit of the computation using more advanced
and statistically sound BLUP, we compare it with methods
conventionally used in pedometrics:

(1) REML-EBLUP with the Matérn covariance function:
– define the trend function and design matrix M,
– estimate θ of the Matern function with REML by
profile likelihood method,

– estimate β using Eq. (4) with predicted θ,
– apply spatial prediction at unvisited sites using (5).

(2) Regression kriging (RK), which involves:
– estimate β by fitting a linear trend model to observed
data using ordinary least squares (OLS) (Eq. (13)),

– calculating residuals of the trend model,
– computing the experimental variogram of the residuals
using method of moments,
– fitting an exponential model to the experimental
variogram using weighted nonlinear least squares,

– performing kriging of the residuals at the unvisited site,
– calculating values of the trend from OLS at the

unvisited site,
– Final prediction is obtained by summing the OLS
prediction and residuals from kriging.

(3) Ordinary kriging (OK), assuming spatial stationarity:
– computing the experimental variogram of the data
using method of moments,

– fitting an exponential model to the experimental
variogram using weighted nonlinear least squares,

– performing kriging of the data at the unvisited sites.

All of the procedures use global estimates, or using all the data
points for prediction at unknown sites. For prediction using
regression kriging and kriging we used the exponential function
for the variogram, this is because it is stable in nonlinear least-
squares fitting and was found to represent most soil properties
(Minasny and McBratney, 2005). The procedures are
programmed in Matlab (Mathworks, 2004), and the codes are
available from the authors' website www.usyd.edu.au/su/agric/
acpa/software.

http://www.usyd.edu.au/su/agric/acpa/software
http://www.usyd.edu.au/su/agric/acpa/software


Fig. 4. Profile log-likelihood of the residuals: (a) contour plot of REML log-
likelihood L as a function of distance parameter r and smoothness ν; (b) Log-
likelihood L as a function of r at selected values of ν.
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The following indices were used for comparing the
performance of the various spatial prediction methods:

– Root mean squared deviation (RMSD), which measures the
accuracy of predictions:
Fig. 5. Variogram for the (a) log(Zn) concentration data, (b) residuals. Dots
represent empirical variograms, and smoothed lines represent Matérn function
obtained using REML.
RMSD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
n

Xn
i¼1

zðxiÞ � zwðxiÞ
� �2

s
ð27Þ

– Standardised squared deviation, which measures the good-
ness of theoretical estimates:

h xð Þ ¼ fzðxÞ � z
wðxÞg2

r2x
ð28Þ

where z(x) is measured value and z
wðxÞ is predicted value

with variance σx
2. A mean of θ (x) close to 1 indicates a good

estimate (Voltz and Webster, 1990). Lark (2000a) suggested
the median of θ (x) was a better estimate as it is more robust
against outliers. A median value close to 0.455 indicates
kriging with a correct variogram. If the median is signif-
icantly less than 0.455 it indicates kriging overestimates the
variance, and when it is significantly greater than 0.455 it
underestimates the variance.

4. Results

4.1. The Zn concentration along the Meuse River

First we determine parameters of the Matérn variogram of
the data and residuals using the profile-likelihood method.
Fig. 3a shows the log-likelihood contour as a function of r and ν
for the data. The plot shows the optimum value of ν is around 1
with r values from 500 to 2000 m. The largest value of log-
likelihood L from these ranges is obtained when ν=1 and
r=1400. The plot of the variogram of the data is given in Fig. 5,
the symbols represent the empirical variogram, while the
smoothed line is the Matérn function fitted using REML. It
shows that the variogram calculated using REML is similar to
the empirical variogram to distances around 500 m and starts to
increase exponentially. This discrepancy of semivariance at
large lags has been observed by Cressie (1993) and Lark et al.
(2006). But more importantly the variogram from REML
showed increasing semivariance with increasing separation
distance, suggesting the presence of a trend. The profile log-
likelihood for the residuals is shown in Fig. 4, values of r and ν
are correlated with the contour line of maximum L that is



Table 1
Root mean squared deviation (RMSD) and standardised squared deviation θ(x)
using leave-one-out cross validation on the Meuse Zn data using different
prediction methods

Prediction method RMSD (log [ppm]) Mean θ(x) Median θ(x)

REML-EBLUP 0.368 0.996 0.317
Regression Kriging 0.376 1.131 0.347
Kriging 0.424 1.440 0.553
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elongated, showing the higher the smoothness parameter the
shorter the range r. The plot indicates that values for ν that
maximise L is quite high (greater than 5) implying a smooth
spatial process. We estimated parameter values for the covari-
ance of the residuals are c0=0.084, c1=0.109, r=40, ν=8
(Fig. 5b), although we realise that there are other ν values
(which are greater 5) that give similar log-likelihood L values
and similar variograms.

Both data and residuals show a smooth spatial process
(Fig. 5), which can be explained as the data ‘points’ are bulk
averaged over an area of 100 m2 (Burrough and McDonnell,
1998). This is an advantage of using REML with the ‘universal’
variogram model, as we are able to gain insight on the spatial
process which sometimes cannot be gained by experimental
Fig. 6. Maps of predicted log(Zn) concentration (top) and its vari
variograms. In contrast, Pebesma and Heuvelink (1999) calcu-
lated the experimental variogram and fitted an exponential
variogram (which assumes ν=0.5) to the data.

Parameters of the trend (Eq. (23)) estimated using REML are
β0=6.966 and β1=−2.542 while OLS estimated parameters do
not differ much with β0=6.994 and β1=−2.549. We used the
leave-one-out cross-validation procedure to calculate the perfor-
mance indices: root mean squared deviation (RMSD) and the
mean and median of standardised squared deviation θ (x) for
EBLUP, OK, and RK. Cross validation results on Table 1 show
that EBLUP has the lowest RMSD, followed by RK and OK.
The mean of θ (x) for EBLUP is the closest to 1, followed by
RK (1.13) and OK (1.44). The median of θ (x) for EBLUP is
0.32 and for RK=0.35 lower than the critical value of 0.455
suggested by Lark (2000a) implying an overestimation of the
variance.

Fig. 6 shows maps of the predicted log(Zn) concentration on
a regular grid of 40 musing EBLUP, RK and OK. Compared
with OK, the maps showed that the prediction variance is higher
when using EBLUP. Fig. 6 shows no major difference between
maps obtained using EBLUP and RK. However the variance is
underestimated for RK as it assumed independent variance
contribution from OLS and kriging, and variance obtained from
OLS (Eq. (15)) is quite small.
ance (bottom) using EBLUP, regression kriging and kriging.



Fig. 7. Trend function for topsoil pH data in the Hunter Valley.

Table 2
Prediction of topsoil pH in the Hunter Valley for the validation set

Prediction method RMSD Mean θ(x) Median θ(x)

REML-EBLUP 0.674 2.45 0.69
Regression Kriging 0.682 1.07 0.32
Kriging 0.690 1.09 0.34
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4.2. Soil pH data in the Hunter Valley

Fig. 7 shows the trend model (Eq. (23)) fitted to the soil pH
data, using REMLthe parameters are: β0=7.14, β1=−0.0002,
β2=0.31 (RMSD=0.67). It illustrates the decrease in soil pH
about 1 unit with distance of 4 km from west to east, and the
increase pH of 0.3 unit with viticulture land-use due to liming.
Fig. 8 shows the variogram of the data and residuals, where the
REML estimated variogram and empirical variograms appear to
be quite similar. Although the trend is apparent in the data, it
does not have a large influence on the variogram.

The dataset is divided into a prediction (training) set (250
observations) and a validation set (149 points). Table 2 shows
the prediction power using the 3 methods on the validation set,
EBLUP appears to have the lowest RMSD. However according
to the θ(x) statistics, EBLUP performs worst with mean 2.45
(greatest deviation from 1), and median 0.69 (deviates the most
from 0.455), which implies EBLUP underestimates the variance.
Fig. 8. Variogram of topsoil pH data in the Hunter Valley. Dots (points) represent
experimental variogram calculated using method of moments. Smoothed lines
are Matern function estimated using REML.
Ordinary kriging and regression kriging perform similarly
according to θ(x) statistics.

We used a different number of observations (50, 60, 70, 80,
100, 150, 200, 250) for calibrating themodel and predicting it on a
validation set. This is to test whether prediction can be enhanced
using REML-EBLUP when the number of observations is
reduced. Lark (2000b) demonstrated that with 60 samples, a
variogram estimated using the maximum likelihood is similar to
that achieved by the method of moments with 90–120 data which
is often regarded as the minimum sample size required.

The prediction set is sampled 10 times for a particular
number of observations: 50, 60, 70, 80, 100, 150, and 200. For
each replication of a particular sample size the parameters of the
Matérn variogram were estimated using REML, and the
validation set is predicted using EBLUP. Similarly for
regression kriging it involves, fitting a linear model using
OLS, calculating the residuals, calculating experimental
variogram, fitting an exponential model to the experimental
variogram, kriging the residuals to the validation set, applying
the trend model to the test set, then summing the linear model
and the kriged residuals. The root mean squared deviation on
the validation set is calculated each time.

Table 3 shows the average RMSD for prediction on the test
set using the prediction set at different number of samples from
50 to 250. For each sample size, we tested REML-EBLUP and
regression kriging with and without the trend model. Results in
Table 3 indicated that there are some benefits of using REML-
EBLUP for sample size b70; however, the improvement is not
significant. Cressie (1993) made a remark that the bias of
variograms in RK is important when the number of data is small
and the lag distance is large. Fig. 9 shows that REML estimates
of the residual variograms are quite consistent even just using
50 observations.

Surprisingly regression kriging predicts the same or better in
some instances compared with the more complicated calcula-
tion of REML-EBLUP. There is also an indication that adding
Table 3
RMSD of prediction for the validation set using different spatial prediction
methods and various number of data points

No. of data
samples used

With Trend Without trend

EBLUP
(Matérn)

RK
(Exponential)

EBLUP
(Matérn)

Kriging
(Exponential)

50 0.718 0.743 0.746 0.761
60 0.697 0.710 0.737 0.747
70 0.705 0.693 0.734 0.757
80 0.701 0.706 0.726 0.712
100 0.692 0.687 0.717 0.706
150 0.688 0.678 0.705 0.698
200 0.679 0.677 0.686 0.692
250 0.666 0.669 0.669 0.688



Fig. 9. Variogram of the residuals for topsoil pH data in the Hunter Valley
calculated using REML with different number of observations.

Table 4
Prediction of clay content in the Edgeroi area for the validation set

Prediction methods RMSD (kg/kg) Mean θ(x) Median θ(x)

REML-EBLUP 0.120 0.58 0.27
Regression Kriging 0.122 1.01 0.45
Kriging 0.126 1.08 0.58
Ordinary LS (Trend only) 0.139
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the trend component improves the prediction when the number
of observations is b200. As we see from Fig. 8 the trend model
has a small influence on the variogram. This may explain why
EBLUP does not perform much better when the number of
observations is greater than 200.

4.3. Topsoil clay content in the Edgeroi area

Using stepwise regression on the prediction set (200
observations), we obtained the following linear regression of
top soil clay content as a function of Clay_Index (Landsat TM
[Band#5/ Band#7]), Radiometrics K (K), elevation (Elev), and
topographic wetness index (qwet):

Clay ¼ 0:68� 0:14Clay�Indexþ 0:11K � 0:001Elev

þ 0:011Slopeþ 0:01qwet
ðR2 ¼ 0:38;RMSD ¼ 0:14kg kg�1Þ

ð29Þ

Using REML, we obtain the following prediction equation:

ClayðxÞ ¼ 0:95� 0:07 Clay�Indexþ 0:04 K � 0:002 Elev

þ 0:019 Slopeþ 0:002 qwetþ eðxÞ:
ð30Þ

Fig. 10 shows the variogram of the data, trend model, and
residuals. REML estimated parameters of the variogram as:
Fig. 10. Variogram of clay content in the Edgeroi area. Dots represent empirical
variograms, and smooth lines represent Matérn function estimated using REML.
c0=0.0, c1=0.067, r=50000 and ν=0.15. We fixed the range
parameter to the maximum distance of the area as the log-
likelihood is increasing with increasing r, suggesting a very
long range. Fig. 10 shows the discrepancy between the vario-
gram obtained by REML and method of moments. The variance
estimated using REML is much larger. This may be the problem
of biased estimation of variograms as observed by Lark et al.
(2006). We can see that the trend model only constitutes a small
part of the variance.

Table 4 shows the prediction on the validation set (141
observations), as with previous examples using RMSD the
performance of EBLUP is just slightly better than the others.
According to the θ(x) statistics, REML-EBLUP performs worst
with mean 0.58 and median 0.27 implying overestimation of the
variance. The best predictor according to the θ(x) statistics is
regression kriging. Fig. 11 shows prediction on the test set using
EBLUP and RK, there are only minor differences between
regression kriging and kriging.

4.4. Nitrogen fertiliser field experiment

Fig. 12 shows the profile likelihood estimation of the optimal
smoothness parameter ν of the Matérn function. The plot points
to 1.2 as an optimal value for ν, suggesting a smooth spatial
process. The smooth process is because each observation refers
to an average yield within a plot of 3360 m2. Fig. 13 shows the
response functions of the fertiliser application on the cotton lint
yield for the 3 management zone. As seen, the 3 zones have a
different maximum yield, zone 1 is the highest, followed by
Fig. 11. Comparison between observed and predicted topsoil clay content in the
Edgeroi area.



Fig. 12. Profile likelihood determining the optimum smoothness parameter ν of
the Matern covariance function.

Table 5
Prediction of cotton lint yield from N fertiliser field experiment using leave-one-
out cross validation

Prediction methods RMSD (Mg/ha) Mean θ(x) Median θ(x)

REML-EBLUP 0.126 0.31 0.08
Regression Kriging 0.157 1.03 0.32
Kriging 0.163 1.86 0.54
Ordinary LS (Trend only) 0.188
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zones 2 and 3, respectively. The difference between the qua-
dratic response function from EBLUP and OLS is small.
Optimum fertiliser rates giving the maximum yield estimated by
EBLUP and OLS do not differ much. Using leave-one-out cross
validation we evaluated the performance of the 3 methods in
predicting yield. Table 5 shows that REML-EBLUP out-
performed RK and OK. This is the only example in this paper
that shows the advantage of REML-EBLUP, increasing the
precision about 24 times compared with RK. The inadequacy of
the θ(x) statistics is demonstrated again, favouring kriging and
implying the overestimation of variance for EBLUP.

5. Discussion

Theoretically RK should not perform better than REML-
EBLUP as it assumes an independent fixedmodel and the random
effect. It has been shown that the estimation of variogram of the
residuals may be biased by using RK especially at large lags, and
the prediction variance is underestimated (Cressie, 1993).
Although results presented here show slight improvement of
Fig. 13. Response function for the nitrogen field trial experiment, dots represent
observations, curves represent estimated quadratic response function.
prediction when using REML-EBLUP, the advantage does not
appear to be large. Table 6 shows the relative improvement of
using REML-EBLUP compared with RK and OK in terms of the
reduction in RMSD. We see that for soil properties, the improve-
ment over RK is quite small 0.5–3.5%. The improvement over
OK is about twice of RK.We are surprised to find that practically
RK performs as well as EBLUP. The advantage of EBLUP is only
shown in the field experiment data where the yield is clearly
affected by the N fertiliser andmanagement zones. Cressie (1993)
noted substantial bias at large lags of variogram when the
residuals are estimated based onOLS (as done inRK), however in
a local neighbourhood kriging predictor mainly used variogram
model at small lags and the discrepancy ismore pronounced in the
predictor variance. There are mixed results with regard to the use
of standardised squared deviations θ(x), from the Meuse Zn data
which has a strong trend, the mean and median of θ(x) suggests
similar performance of EBLUP and RK. Results on the pH and
clay content prediction suggest that REML-EBLUP performed
worse than RK and OK. This appropriateness of using this
statistics for kriging with trend need further investigation as it
favours the use of OK and RK, where the variance mostly comes
from the spatial component. Meanwhile the variance of REML-
EBLUP is a combination of both trend and the residuals (Eq. (5)).

TheMatérn covariance function is useful for characterising the
nature of the spatial process. As seen in the Meuse Zn data and
Nitrogen fertiliser experiment, the Matérn function identifies the
smooth spatial process which is difficult to determine with the
method ofmoments. However this information does not provide a
significant advantage in spatial prediction over RK.

We have shown that in some cases the prediction incor-
porating ancillary variables can improve the prediction; in some
instances the improvement is quite small. We demonstrated that
when the trend model only explains a small part of the variation,
there is a slight improvement in prediction when using RK or
EBLUP (as in clay content in Edgeroi and Hunter Valley pH
data). Thus as an initial inspection, we suggest examination of
the variograms of the data, and residuals using the method of
Table 6
Relative improvement of prediction using REML-EBLUP compared with
regression kriging (RK) and ordinary kriging (OK) in terms of RMSD reduction

Improvement
over RK (%)

Improvement
over OK (%)

Meuse Zn data 2.1 15.2
Pokolbin pH (50 observations) 3.5 6.0
Pokolbin pH (250 observation) 1.2 2.2
Edgeroi clay content 1.7 5.0
Cotton yield 24.6 29.4
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moments. When the trend model constitutes a large proportion
of the variance (as in the Meuse Zn concentration data, and N
field experiment) BLUP and RK can help to improve the
prediction. On the other hand, for the purpose of digital soil
mapping, the inclusion of ancillary variables adds more infor-
mation to the produced map compared to using kriging. With
kriging the resulted soil maps will be too smooth especially
when the interpolation covers large areas. Incorporating the
ancillary variables which represent the soil forming factors adds
content to the map. The information content produced from
such maps compared with just kriging need to be accounted
when comparing the prediction performance.

6. Conclusions

Although statistically inappropriate, RK is easy and has
proven to be a robust technique for practical application. Further-
more various linear and nonlinear trend models can be incor-
porated. When a large number of data is present (eg. proximally
sensed data) local regression kriging, which involves estimating a
local trend model and combination with local kriging of the
residuals (Walter et al., 2001) should present a unique and robust
technique with good results. REML-EBLUP is useful when there
is a strong trend, we need to understand the underlying spatial
process, and when the number of observations is small (b200).
We conclude that improvement in the prediction of soil properties
does not rely on more sophisticated statistical methods, but rather
on gathering more useful and higher quality data.
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